q-Matroids and their Cryptomorphisms

Eimear Byrne University College Dublin

June 3, 2021

Women in Combinatorics Virtual Colloquium

q-Analogues

q-Analogues

subsets $\{s_1,, s_k\}$ of $[n]$	subspaces $\langle s_1,,s_k angle$ of \mathbb{F}^n
set cardinality: S	vector space dimension: $dim(S)$
set complement: [n] – S	orthogonal complement: ${\cal S}^\perp$
binomial coefficients $\binom{n}{k}$	Gaussian coefficients $\begin{bmatrix} n \\ k \end{bmatrix}_q$
Hamming weight of	\mathbb{F}_q -dimension of
$(v_1,,v_n)\in \mathbb{F}_{q^m}^n$	$(v_1,,v_n)\in \mathbb{F}_{q^m}^n$
Hamming weight of	\mathbb{F}_q -rank of
	$\left(\begin{array}{cccc} v_{11} & v_{12} & \cdots & v_{1n} \end{array}\right)$
	v_{21} v_{22} \cdots v_{2n}
$(v_1,,v_n) \in \mathbb{F}q^m$	$\begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \in \mathbb{F}_q^{m}$
	$\left(v_{m1} v_{m2} \cdots v_{mn} \right)$

$$1 \leftarrow q$$

q-Analogues in Coding Theory

Block codes - subspaces of \mathbb{F}_q^n	\longrightarrow	Matrix codes - subspaces of $\mathbb{F}_q^{n imes m}$
Reed-Solomon Codes	\longrightarrow	Delsarte-Gabidulin Codes
Hamming metric	\longrightarrow	Rank metric
$d_H(x,y) = \{i : x_i \neq y_i\} $		$\operatorname{rk}(X - Y)$
Row space of a matrix	\longrightarrow	Slice space of a 3-tensor
MDS codes	\longrightarrow	MRD codes

q-Analogues in Matroid Theory

Boolean lattice	\longrightarrow	Subspace Lattice
(2 ^E ,∪,∩)		$(\mathscr{L}(E),+,\cap)$
$\mu(0,x) = (-1)^{ x }$		$\mu(0,U) = (-1)^{\dim(U)} q^{\binom{\dim(U)}{2}}$
Matroid	\longrightarrow	q-Matroid
Polymatroid	\longrightarrow	q-Polymatroid

Matroids

Matroids

- Matroids are objects that generalize concepts in graph theory and linear algebra.
- Graphs: circuits, cycles, dual, contraction, deletion
- Linear algebra: independence, bases, flats, closure, rank
- Applications: information theory, secret sharing, distributed storage, coding theory, combinatorial optimization
- A matroid can be characterized as finite geometric lattice (its lattice of flats).
- In fact a matroid can be equivalently determined by its flats, independent sets, bases, hyperplanes, circuits, closure function, rank function etc.
- These equivalent descriptions of a matroid are called cryptomorphisms.
- Have a lot of different cryptomorphisms can be quite useful for defining and characterizing matroids.

Matroids and Rank Functions

Definition

A matroid is a pair (E, r) satisfying the following.

- E is a finite set; 2^E is the lattice of subsets of E
- $r: 2^E \to \mathbb{N}_0$ is a rank function, s.t. for all $A, B \in E$:
 - (r1) $0 \le r(A) \le |A|$.
 - (r2) If $A \subseteq B$ then $r(A) \leq r(B)$.
 - (r3) $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ (semimodularity).

Matroids and Rank Functions

Definition

A matroid is a pair (E, r) satisfying the following.

- E is a finite set; 2^E is the lattice of subsets of E
- $r: 2^E \to \mathbb{N}_0$ is a rank function, s.t. for all $A, B \in E$: (r1) $0 \le r(A) \le |A|$. (r2) If $A \subseteq B$ then $r(A) \le r(B)$. (r3) $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ (semimodularity).

Example

Let k be a positive integer, $k \le n$. $U_{k,n}$ is the uniform matroid, with rank function:

$$r(U) := \begin{cases} |U| & \text{if } |U| \le k, \\ k & \text{if } |U| > k. \end{cases}$$

Matroids and Rank Functions

Definition

A matroid is a pair (E, r) satisfying the following.

- E is a finite set; 2^E is the lattice of subsets of E
- $r: 2^E \to \mathbb{N}_0$ is a rank function, s.t. for all $A, B \in E$: (r1) $0 \le r(A) \le |A|$. (r2) If $A \subseteq B$ then $r(A) \le r(B)$. (r3) $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ (semimodularity).
- Example

Let k be a positive integer, $k \le n$. $U_{k,n}$ is the uniform matroid, with rank function:

$$r(U) := \begin{cases} |U| & \text{if } |U| \le k, \\ k & \text{if } |U| > k. \end{cases}$$

(r3) If $|A \cup B| \le k$ then $r(A \cup B) + r(A \cap B) = |A \cup B| + |A \cap B| = |A| + |B| = r(A) + r(B)$. If |A| > k then $r(A \cup B) + r(A \cap B) = k + r(A \cap B) \le k + r(B) = r(A) + r(B)$. Etc

Matroids

Definition

A matroid is a pair (E, r) satisfying

• E is a finite set; 2^E is the lattice of subsets of E

•
$$r: 2^E \to \mathbb{N}_0$$
 is a rank function, s.t. for all $A, B \in E$:

(r1)
$$0 \le r(A) \le |A|$$
.
(r2) If $A \subseteq B$ then $r(A) \le r(B)$.
(r3) $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ (semimodularity).

Example

Let
$$E = \{1, \dots, 5\}$$
. Let $A = \begin{bmatrix} 1 & 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 & 2 \\ \end{bmatrix} \in \mathbb{F}_3^{2 \times 5}$.

Define $r(S) = \dim((\operatorname{col}(A, s) : s \in S)).$

Each singleton has rank 1. $r(\{2,5\}) = r(\{3,4\}) = 1$, r(S) = 2 for all other subsets.

We say that $\{2,5\}$ and $\{3,4\}$ are **dependent sets**.

Flats, Circuits & Independent Spaces of a Matroid

Definition

Let M = (E, r) be a matroid. Let $A \subseteq E$. A is called:

- a flat if $r(A \cup \{x\}) > r(A) \ x \le E, x \le A$,
- **2** independent if r(A) = |A|,
- **O** dependent if it is not independent,
- a circuit if it is dependent and every proper subset of A is independent.
- Solution The closure of A is $cl(A) := \{x \in E : r(A \cup \{x\}) = r(A)\}.$

Flats, Circuits & Independent Spaces of a Matroid

Definition

Let M = (E, r) be a matroid. Let $A \subseteq E$. A is called:

- a flat if $r(A \cup \{x\}) > r(A) \ x \le E, x \le A$,
- **2** independent if r(A) = |A|,
- **O** dependent if it is not independent,
- a circuit if it is dependent and every proper subset of A is independent.
- Solution The closure of A is $cl(A) := \{x \in E : r(A \cup \{x\}) = r(A)\}.$

Example

Let k be a positive integer, $k \le n$. $U_{k,n}$ is the uniform matroid, with rank function:

$$r(U) := \left\{ egin{array}{cc} |U| & ext{if } |U| \leq k, \ k & ext{if } |U| > k. \end{array}
ight.$$

- A is independent if $|A| \leq k$.
- A is a circuit if |A| = k + 1.
- A is a flat if $|A| \le k-1$ or if A = E.

Axiom Systems

There are separate axiom systems that equivalently defines a matroid.

- independence (i1)-(i3),
- flats (f1)-(f3),
- circuits (c1)-(c3),
- closure (cl1)-(cl4),
- Etc

(Independence Axioms)

Let $\mathscr{I} \subseteq 2^E$. \mathscr{I} is a collection of independent sets if it satisfies the following. (i1) $\emptyset \in \mathscr{I}$. (i2) If $I \subseteq J$ and $J \in \mathscr{I} \implies I \in \mathscr{I}$ (decreasing). (i3) If $I, J \in \mathscr{I}$ and |I| < |J| then $\exists x \in J$ s.t $\{x\} \cup I \in \mathscr{I}$ (augmentation).

For example, if \mathscr{I} is a collection of independent spaces, then it defines a matroid (E,r) whose set of independent sets is \mathscr{I} . Conversely, if (E,r) is a matroid, its set of independent sets satisfies (i1) - (i3).

Cryptomorphisms with Duality

q-Matroids

Matroids \longrightarrow *q*-Matroids

Definition

A matroid is a pair (E, r) satisfying

• E is a finite set; 2^E is the lattice of subsets of E

•
$$r: 2^E \to \mathbb{N}_0$$
 is a rank function, s.t. for all $A, B \in E$:

(r1)
$$0 \le r(A) \le |A|$$
.
(r2) If $A \subseteq B$ then $r(A) \le r(A)$

(r2) If $\overrightarrow{A} \subseteq \overrightarrow{B}$ then $r(A) \leq r(B)$. (r3) $r(A \cup B) + r(A \cap B) \leq r(A) + r(B)$ (semimodularity).

Matroids \longrightarrow *q*-Matroids

Definition

A matroid is a pair (E, r) satisfying

• E is a finite set; 2^E is the lattice of subsets of E

•
$$r: 2^E \to \mathbb{N}_0$$
 is a rank function, s.t. for all $A, B \in E$:

(r1)
$$0 \le r(A) \le |A|$$
.

(r2) If $A \subseteq B$ then $r(A) \leq r(B)$. (r3) $r(A \cup B) + r(A \cap B) \leq r(A) + r(B)$ (semimodularity).

Definition

- A q-matroid is a pair (E, r) satisfying
 - E is a finite dim'l vector space; $\mathscr{L}(E)$ is the lattice of subspaces of E
 - $r: \mathscr{L}(E) \to \mathbb{N}_0$ is a rank function, s.t. for all $A, B \leq E$:

$$(\mathsf{R1}) \ \ \mathsf{0} \leq r(A) \leq \dim A.$$

(R2) If
$$A \leq B$$
 then $r(A) \leq r(B)$

(R3) $r(A+B)+r(A\cap B) \leq r(A)+r(B)$ (semimodularity).

Representable *q*-Matroids

Every \mathbb{F}_{q^m} -linear rank metric code gives a q-matroid. [Jurrius, Pellikaan, 2018]

Let $E = \mathbb{F}_q^n$ and let G be a $k \times n$ matrix of rank k over \mathbb{F}_{q^m} . Let $A \subseteq E$ and Y a matrix whose columns span A.

Then r(A) = rk(GY) satisfies the axioms (R1), (R2), (R3).

This is a **representable** *q*-matroid.

Matrix codes for the rank metric give *q*-polymatroids.

Flats, Circuits, Closure & Independent Spaces of a q-Matroid

Definition

Let M = (E, r) be a q-matroid. Let $A \le E$. A is called:

- a flat if $r(A+x) > r(A) \ x \le E, x \le A$,
- **independent** if $r(A) = \dim A$,
- **O** dependent if it is not independent,
- a circuit if it is dependent and every proper subspace of A is independent.
- The closure of A is $cl(A) := max\{F \le E : A \le F, r(A+F) = r(A)\}$.

Flats, Circuits, Closure & Independent Spaces of a q-Matroid

Definition

Let M = (E, r) be a q-matroid. Let $A \leq E$. A is called:

- **3** a flat if $r(A+x) > r(A) \ x \le E, x \le A$,
- **independent** if $r(A) = \dim A$,
- **O** dependent if it is not independent,
- **a circuit** if it is dependent and every proper subspace of A is independent.
- Solution The closure of A is $cl(A) := max\{F \le E : A \le F, r(A+F) = r(A)\}$.

Example

Let k be a positive integer, $k \le n$. $U_{k,n}$ is the uniform q-matroid, with rank function:

$$r(U) := \begin{cases} \dim(U) & \text{ if } \dim(U) \leq k, \\ k & \text{ if } \dim(U) > k. \end{cases}$$

- A is independent if $\dim(A) \leq k$.
- A is a circuit if dim(A) = k + 1.
- A is a flat if $\dim(A) \le k-1$ or if A = E.

Axioms

Independent Sets	Independent Spaces
(i1) $\emptyset \in \mathscr{I}$.	(11) $0 \in \mathscr{I}$.
(i2) If $I \subseteq J, J \in \mathscr{I} \implies I \in \mathscr{I}$.	(12) If $I \leq J, J \in \mathscr{I} \implies I \in \mathscr{I}$.
(i3) If $I,J\in \mathscr{I}$, $ I < J $ then	(13) If $I, J \in \mathscr{I}$, dim $(I) < \dim(J)$ then
$\exists x \in J \setminus I \text{ s.t. } \{x\} \cup I \in \mathscr{I}.$	$\exists x \leq J, x \not\leq I, \dim(x) = 1 \text{ s.t. } I + x \in \mathscr{I}.$

Independent Sets	Independent Spaces
(i1) $\emptyset \in \mathscr{I}$.	(11) $0 \in \mathscr{I}$.
(i2) If $I \subseteq J, J \in \mathscr{I} \implies I \in \mathscr{I}$.	(12) If $I \leq J, J \in \mathscr{I} \implies I \in \mathscr{I}$.
(i3) If $I,J\in \mathscr{I}$, $ I < J $ then	(13) If $I, J \in \mathscr{I}$, dim $(I) < \dim(J)$ then
$\exists x \in J \setminus I \text{ s.t. } \{x\} \cup I \in \mathscr{I}.$	$\exists x \leq J, x \not\leq I, \ \dim(x) = 1 \ s.t. \ I + x \in \mathscr{I}.$
	(14) If $I \leq A$, $J \leq B$, $I, J \in \mathscr{I}$, max'l in A, B
	then $A + B$ has a max'l ind. subspace in $I + J$.

Independent Sets	Independent Spaces
(i1) $\emptyset \in \mathscr{I}$.	$(11) \ 0 \in \mathscr{I}.$
(i2) If $I \subseteq J, J \in \mathscr{I} \implies I \in \mathscr{I}$.	(12) If $I \leq J, J \in \mathscr{I} \implies I \in \mathscr{I}$.
(i3) If $I, J \in \mathscr{I}$, $ I < J $ then	(13) If $I, J \in \mathscr{I}$, dim $(I) < \dim(J)$ then
$\exists x \in J \setminus I \text{ s.t. } \{x\} \cup I \in \mathscr{I}.$	$\exists x \leq J, x \not\leq I, \ \dim(x) = 1 \ s.t. \ I + x \in \mathscr{I}.$
	(14) If $I \leq A$, $J \leq B$, $I, J \in \mathscr{I}$, max'l in A, B
	then $A+B$ has a max'l ind. subspace in $I+J$.

Define

$$r(A) := \max\{\dim(I) : I \le A, I \in \mathscr{I}\} \text{ for all } A \le E.$$

Independent Sets	Independent Spaces
(i1) $\emptyset \in \mathscr{I}$.	(11) $0 \in \mathscr{I}$.
(i2) If $I \subseteq J, J \in \mathscr{I} \implies I \in \mathscr{I}$.	(12) If $I \leq J, J \in \mathscr{I} \implies I \in \mathscr{I}$.
(i3) If $I, J \in \mathscr{I}$, $ I < J $ then	(13) If $I, J \in \mathscr{I}$, dim $(I) < \dim(J)$ then
$\exists x \in J \setminus I \text{ s.t. } \{x\} \cup I \in \mathscr{I}.$	$\exists x \leq J, x \not\leq I, \ \dim(x) = 1 \ s.t. \ I + x \in \mathscr{I}.$
	(I4) If $I \leq A$, $J \leq B$, $I, J \in \mathscr{I}$, max'l in A, B
	then $A + B$ has a max'l ind. subspace in $I + J$.

Define

$$r(A) := \max\{\dim(I) : I \le A, I \in \mathscr{I}\} \text{ for all } A \le E.$$

If (I1)-(I3) hold but (I4) does not, we can cook up examples violating submodularity.

Independent Sets	Independent Spaces
(i1) $\emptyset \in \mathscr{I}$.	$(11) \ 0 \in \mathscr{I}.$
(i2) If $I \subseteq J, J \in \mathscr{I} \implies I \in \mathscr{I}$.	(12) If $I \leq J, J \in \mathscr{I} \implies I \in \mathscr{I}$.
(i3) If $I, J \in \mathscr{I}$, $ I < J $ then	(13) If $I, J \in \mathscr{I}$, dim $(I) < \dim(J)$ then
$\exists x \in J \setminus I \text{ s.t. } \{x\} \cup I \in \mathscr{I}.$	$\exists x \leq J, x \not\leq I, \ \dim(x) = 1 \ s.t. \ I + x \in \mathscr{I}.$
	(14) If $I \leq A$, $J \leq B$, $I, J \in \mathscr{I}$, max'l in A, B
	then $A+B$ has a max'l ind. subspace in $I+J$.

Define

$$r(A) := \max\{\dim(I) : I \le A, I \in \mathscr{I}\}$$
 for all $A \le E$.

If (I1)-(I3) hold but (I4) does not, we can cook up examples violating submodularity.

Example

Let $\mathscr{I} := \{0, \langle 1100 \rangle, \langle 0011 \rangle, \langle 1111 \rangle, \langle 1100, 0011 \rangle\} \subset \mathbb{F}_2^4$. \mathscr{I} satisfies (I1)-(I3), fails (I4). Let $A = \langle 1100, 0001 \rangle$, $B = \langle 1100, 0010 \rangle$. So $A + B = \langle 1100, 0011, 0010 \rangle$, $A \cap B = \langle 1100 \rangle$.

$$r(A+B)+r(A\cap B) = 2+1 \leq r(A)+r(B) = 1+1.$$

Independent Sets	Independent Spaces
(i1) $\emptyset \in \mathscr{I}$.	$(11) \ 0 \in \mathscr{I}.$
(i2) If $I \subseteq J, J \in \mathscr{I} \implies I \in \mathscr{I}$.	$(I2) \text{ If } I \leq J, J \in \mathscr{I} \implies I \in \mathscr{I}.$
(i3) If $I, J \in \mathscr{I}$, $ I < J $ then	(13) If $I, J \in \mathscr{I}$, dim $(I) < dim(J)$ then
$\exists x \in J \setminus I \text{ s.t. } \{x\} \cup I \in \mathscr{I}.$	$\exists x \leq J, x \not\leq I, \ \dim(x) = 1 \ s.t. \ I + x \in \mathscr{I}.$
	(14) If I \leq A, I \in \mathscr{I} , max'l in A, dim $(x)=1$
	then $A + x$ has a max'l ind. subspace in $I + x$.

Define

$$r(A) := \max\{\dim(I) : I \le A, I \in \mathscr{I}\}$$
 for all $A \le E$.

If (I1)-(I3) hold but (I4) does not, we can cook up examples violating submodularity.

Example

Let $\mathscr{I} := \{0, \langle 1100 \rangle, \langle 0011 \rangle, \langle 1111 \rangle, \langle 1100, 0011 \rangle\} \subset \mathbb{F}_2^4$. \mathscr{I} satisfies (I1)-(I3), fails (I4). Let $A = \langle 1100, 0001 \rangle$, $B = \langle 1100, 0010 \rangle$. So $A + B = \langle 1100, 0011, 0010 \rangle$, $A \cap B = \langle 1100 \rangle$.

$$r(A+B)+r(A\cap B)=3 \leq 2=r(A)+r(B).$$

A Cryptomorphism Between the Independence and Rank Axioms

Theorem (Jurrius, Pellikaan 2018)

- Let I be a family of subspaces of E that satisfies the flat axioms (11)-(14). Then (E, I) determines a q-matroid (E, r_I) whose set of independent spaces is I.
- Let (E,r) be a q-matroid with independent spaces I_r. Then I_r satisfies axioms (I1)-(I4).

Let $G \in \mathbb{F}_{q^m}^{k \times n}$ have rank k. Let $Y \in \mathbb{F}_q^{r \times n}$. If $R_Y := \operatorname{row}_{\mathbb{F}_q}(Y)$ then $r(R_Y) = \operatorname{rk}_{\mathbb{F}_{q^m}}(GY^T)$.

Let $G \in \mathbb{F}_{q^m}^{k \times n}$ have rank k. Let $Y \in \mathbb{F}_q^{r \times n}$. If $R_Y := \operatorname{row}_{\mathbb{F}_q}(Y)$ then $r(R_Y) = \operatorname{rk}_{\mathbb{F}_{q^m}}(GY^T)$. $M[G] := (\mathbb{F}_q^n, r)$ is the representable q-matroid determined by (the rowspace of) G.

Let $G \in \mathbb{F}_{q^m}^{k \times n}$ have rank k. Let $Y \in \mathbb{F}_q^{r \times n}$. If $R_Y := \operatorname{row}_{\mathbb{F}_q}(Y)$ then $r(R_Y) = \operatorname{rk}_{\mathbb{F}_{q^m}}(GY^T)$. $M[G] := (\mathbb{F}_q^n, r)$ is the representable q-matroid determined by (the rowspace of) G. G is the generator matrix of an \mathbb{F}_{q^m} -[n, k] code C and is the PCM of an \mathbb{F}_{q^m} -[n, n-k] code C^{\perp} .

$$C^{\perp} = \{ y \in \mathbb{F}_{q^m}^n : Gy^T = 0 \}.$$

Let $G \in \mathbb{F}_{q^m}^{k \times n}$ have rank k. Let $Y \in \mathbb{F}_q^{r \times n}$. If $R_Y := \operatorname{row}_{\mathbb{F}_q}(Y)$ then $r(R_Y) = \operatorname{rk}_{\mathbb{F}_{q^m}}(GY^T)$. $M[G] := (\mathbb{F}_q^n, r)$ is the representable q-matroid determined by (the rowspace of) G. G is the generator matrix of an \mathbb{F}_{q^m} -[n, k] code C and is the PCM of an \mathbb{F}_{q^m} -[n, n-k] code C^{\perp} .

$$C^{\perp} = \{ y \in \mathbb{F}_{q^m}^n : Gy^T = 0 \}.$$

Let $y \in \mathbb{F}_{q^m}^n$ s.t. $\operatorname{rk}(y) := \operatorname{rk}_{\mathbb{F}_q}(\langle y_1, \dots, y_n \rangle) = r$. Then y = zY some $z \in \mathbb{F}_{q^m}^r$, $\operatorname{rk}(z) = r$. We say that y has **support** equal to R_Y .

Let $G \in \mathbb{F}_{q^m}^{k \times n}$ have rank k. Let $Y \in \mathbb{F}_q^{r \times n}$. If $R_Y := \operatorname{row}_{\mathbb{F}_q}(Y)$ then $r(R_Y) = \operatorname{rk}_{\mathbb{F}_{q^m}}(GY^T)$. $M[G] := (\mathbb{F}_q^n, r)$ is the representable q-matroid determined by (the rowspace of) G. G is the generator matrix of an \mathbb{F}_{q^m} -[n, k] code C and is the PCM of an \mathbb{F}_{q^m} -[n, n-k] code C^{\perp} .

$$C^{\perp} = \{ y \in \mathbb{F}_{q^m}^n : Gy^T = 0 \}.$$

Let $y \in \mathbb{F}_{q^m}^n$ s.t. $\operatorname{rk}(y) := \operatorname{rk}_{\mathbb{F}_q}(\langle y_1, \dots, y_n \rangle) = r$. Then y = zY some $z \in \mathbb{F}_{q^m}^r$, $\operatorname{rk}(z) = r$.

We say that y has **support** equal to R_Y .

So
$$Gy^T = 0 \Leftrightarrow GY^T z^T = 0 \implies \operatorname{rk}_{\mathbb{F}_{q^m}}(GY^T) < r$$
.
Conversely, $\operatorname{rk}_{\mathbb{F}_{q^m}}(GY^T) < r \implies GY^T v^T = 0$ some $v, \Leftrightarrow Gz^T = 0, z = vY$.

Let $G \in \mathbb{F}_{q^m}^{k \times n}$ have rank k. Let $Y \in \mathbb{F}_q^{r \times n}$. If $R_Y := \operatorname{row}_{\mathbb{F}_q}(Y)$ then $r(R_Y) = \operatorname{rk}_{\mathbb{F}_{q^m}}(GY^T)$. $M[G] := (\mathbb{F}_q^n, r)$ is the representable q-matroid determined by (the rowspace of) G. G is the generator matrix of an \mathbb{F}_{q^m} -[n, k] code C and is the PCM of an \mathbb{F}_{q^m} -[n, n-k] code C^{\perp} .

$$C^{\perp} = \{ y \in \mathbb{F}_{q^m}^n : Gy^T = 0 \}.$$

Let $y \in \mathbb{F}_{q^m}^n$ s.t. $\operatorname{rk}(y) := \operatorname{rk}_{\mathbb{F}_q}(\langle y_1, \dots, y_n \rangle) = r$. Then y = zY some $z \in \mathbb{F}_{q^m}^r$, $\operatorname{rk}(z) = r$.

We say that y has **support** equal to R_Y .

So
$$Gy^T = 0 \Leftrightarrow GY^T z^T = 0 \implies \operatorname{rk}_{\mathbb{F}_{q^m}}(GY^T) < r$$
.
Conversely, $\operatorname{rk}_{\mathbb{F}_{q^m}}(GY^T) < r \implies GY^T v^T = 0$ some $v, \Leftrightarrow Gz^T = 0, z = vY$.

The dependent spaces of M[G] are the supports of the members of C^{\perp} .

A space is independent in M[G] iff it is not the support of an element of C^{\perp} .

$\operatorname{cl}: 2^E \longrightarrow 2^E$	$\operatorname{Cl}:\mathscr{L}(E)\longrightarrow\mathscr{L}(E)$
$(cl1) A \subseteq cl(A).$	(C11) $A \leq cl(A)$.
$(cl2) A \subseteq B \implies cl(A) \subseteq cl(B).$	(Cl2) $A \leq B \implies \operatorname{cl}(A) \leq \operatorname{cl}(B)$.
$(cl3) \operatorname{cl}(A) = \operatorname{cl}(\operatorname{cl}(A)).$	$(CI3) \operatorname{cl}(A) = \operatorname{cl}(\operatorname{cl}(A)).$
(cl4) If $y \subseteq \operatorname{cl}(A + x)$ and $y \not\subseteq \operatorname{cl}(A)$	(Cl4) If $y \leq \operatorname{cl}(A + x)$ and $y \not\leq \operatorname{cl}(A)$
then $x \subseteq cl(A+y)$.	then $x \leq cl(A+y)$.

$cl: 2^E \longrightarrow 2^E$	$\operatorname{Cl}:\mathscr{L}(E)\longrightarrow \mathscr{L}(E)$
$(cl1) A \subseteq cl(A).$	(C11) $A \leq cl(A)$.
$(cl2) A \subseteq B \implies cl(A) \subseteq cl(B).$	(Cl2) $A \leq B \implies \operatorname{cl}(A) \leq \operatorname{cl}(B)$.
$(cl3) \operatorname{cl}(A) = \operatorname{cl}(\operatorname{cl}(A)).$	$(CI3) \operatorname{cl}(A) = \operatorname{cl}(\operatorname{cl}(A)).$
(cl4) If $y \subseteq \operatorname{cl}(A + x)$ and $y \not\subseteq \operatorname{cl}(A)$	(Cl4) If $y \leq \operatorname{cl}(A + x)$ and $y \not\leq \operatorname{cl}(A)$
then $x \subseteq cl(A+y)$.	then $x \leq cl(A+y)$.
$\mathscr{I}_{\mathrm{cl}} := \{X \subseteq E : e \notin \mathrm{cl}(X - e) \text{ any } e \in X\}$	$\mathscr{I}_{\mathrm{Cl}} := \{ X \leq E : \mathrm{Cl}(X) \neq \mathrm{Cl}(A), A < X \}$

$cl: 2^E \longrightarrow 2^E$	$\operatorname{Cl}:\mathscr{L}(E)\longrightarrow \mathscr{L}(E)$
(cl1) $A \subseteq cl(A)$.	(CI1) $A \leq \operatorname{cl}(A)$.
$(cl2) A \subseteq B \implies cl(A) \subseteq cl(B).$	(Cl2) $A \leq B \implies \operatorname{cl}(A) \leq \operatorname{cl}(B)$.
$(cl3) \operatorname{cl}(A) = \operatorname{cl}(\operatorname{cl}(A)).$	$(CI3) \operatorname{cl}(A) = \operatorname{cl}(\operatorname{cl}(A)).$
(cl4) If $y \subseteq cl(A+x)$ and $y \not\subseteq cl(A)$	(Cl4) If $y \leq \operatorname{cl}(A + x)$ and $y \not\leq \operatorname{cl}(A)$
then $x \subseteq cl(A+y)$.	then $x \leq cl(A+y)$.
$\mathscr{I}_{\mathrm{cl}} := \{X \subseteq E : e \notin \mathrm{cl}(X - e) \text{ any } e \in X\}$	$\mathscr{I}_{\mathrm{Cl}} := \{ X \leq E : \mathrm{Cl}(X) \neq \mathrm{Cl}(A), A < X \}$

Example

Let $1 \le k \le n$. Define a map

$$\operatorname{Cl}: \mathbb{F}_q^n \longrightarrow \mathbb{F}_q^n : A \mapsto \begin{cases} A & \text{if } \dim(A) \leq k-1 \\ E & \text{otherwise} \end{cases}$$

$cl: 2^E \longrightarrow 2^E$	$\operatorname{Cl}:\mathscr{L}(E)\longrightarrow \mathscr{L}(E)$
(cl1) $A \subseteq cl(A)$.	(CI1) $A \leq \operatorname{cl}(A)$.
$(cl2) A \subseteq B \implies cl(A) \subseteq cl(B).$	(Cl2) $A \leq B \implies \operatorname{cl}(A) \leq \operatorname{cl}(B)$.
$(cl3) \operatorname{cl}(A) = \operatorname{cl}(\operatorname{cl}(A)).$	$(CI3) \operatorname{cl}(A) = \operatorname{cl}(\operatorname{cl}(A)).$
(cl4) If $y \subseteq \operatorname{cl}(A + x)$ and $y \not\subseteq \operatorname{cl}(A)$	(Cl4) If $y \leq \operatorname{cl}(A + x)$ and $y \not\leq \operatorname{cl}(A)$
then $x \subseteq cl(A+y)$.	then $x \leq cl(A+y)$.
$\mathscr{I}_{\mathrm{cl}} := \{X \subseteq E : e \notin \mathrm{cl}(X - e) \text{ any } e \in X\}$	$\mathscr{I}_{\mathrm{Cl}} := \{ X \leq E : \mathrm{Cl}(X) \neq \mathrm{Cl}(A), A < X \}$

Example

Let $1 \le k \le n$. Define a map

$$\operatorname{Cl}: \mathbb{F}_q^n \longrightarrow \mathbb{F}_q^n: A \mapsto \begin{cases} A & \text{if } \dim(A) \leq k-1 \\ E & \text{otherwise} \end{cases}$$

If dim(I) $\leq k-1$ then for J < I, Cl(J) = $J \neq I$ = Cl(I), so $I \in \mathscr{I}_{\text{Cl}}$.

$cl: 2^E \longrightarrow 2^E$	$\operatorname{Cl}:\mathscr{L}(E)\longrightarrow \mathscr{L}(E)$
(cl1) $A \subseteq cl(A)$.	(CI1) $A \leq \operatorname{cl}(A)$.
$(cl2) A \subseteq B \implies cl(A) \subseteq cl(B).$	(Cl2) $A \leq B \implies \operatorname{cl}(A) \leq \operatorname{cl}(B)$.
$(cl3) \operatorname{cl}(A) = \operatorname{cl}(\operatorname{cl}(A)).$	$(CI3) \operatorname{cl}(A) = \operatorname{cl}(\operatorname{cl}(A)).$
(cl4) If $y \subseteq cl(A+x)$ and $y \not\subseteq cl(A)$	(Cl4) If $y \leq \operatorname{cl}(A + x)$ and $y \not\leq \operatorname{cl}(A)$
then $x \subseteq cl(A+y)$.	then $x \leq cl(A+y)$.
$\mathscr{I}_{\mathrm{cl}} := \{X \subseteq E : e \notin \mathrm{cl}(X - e) \text{ any } e \in X\}$	$\mathscr{I}_{\mathrm{Cl}} := \{ X \leq E : \mathrm{Cl}(X) \neq \mathrm{Cl}(A), A < X \}$

Example

Let $1 \le k \le n$. Define a map

$$\operatorname{Cl}: \mathbb{F}_q^n \longrightarrow \mathbb{F}_q^n: A \mapsto \begin{cases} A & \text{if } \dim(A) \leq k-1 \\ E & \text{otherwise} \end{cases}$$

If dim(I) $\leq k - 1$ then for J < I, Cl(J) $= J \neq I =$ Cl(I), so $I \in \mathscr{I}_{Cl}$. If dim(I) = k then for J < I, Cl(J) $= I \neq E =$ Cl(I), so $I \in \mathscr{I}_{Cl}$.

$cl: 2^E \longrightarrow 2^E$	$\operatorname{Cl}:\mathscr{L}(E)\longrightarrow \mathscr{L}(E)$
(cl1) $A \subseteq cl(A)$.	(CI1) $A \leq \operatorname{cl}(A)$.
$(cl2) A \subseteq B \implies cl(A) \subseteq cl(B).$	(Cl2) $A \leq B \implies \operatorname{cl}(A) \leq \operatorname{cl}(B)$.
$(cl3) \operatorname{cl}(A) = \operatorname{cl}(\operatorname{cl}(A)).$	$(Cl3) \operatorname{cl}(A) = \operatorname{cl}(\operatorname{cl}(A)).$
(cl4) If $y \subseteq \operatorname{cl}(A + x)$ and $y \not\subseteq \operatorname{cl}(A)$	(Cl4) If $y \leq \operatorname{cl}(A + x)$ and $y \not\leq \operatorname{cl}(A)$
then $x \subseteq cl(A+y)$.	then $x \leq cl(A+y)$.
$\mathscr{I}_{\mathrm{cl}} := \{X \subseteq E : e \notin \mathrm{cl}(X - e) \text{ any } e \in X\}$	$\mathscr{I}_{\mathrm{Cl}} := \{ X \leq E : \mathrm{Cl}(X) \neq \mathrm{Cl}(A), A < X \}$

Example

Let $1 \le k \le n$. Define a map

$$\operatorname{Cl}: \mathbb{F}_q^n \longrightarrow \mathbb{F}_q^n: A \mapsto \left\{ egin{array}{c} A & ext{if } \dim(A) \leq k-1 \\ E & ext{otherwise} \end{array}
ight.$$

If dim(1) $\leq k - 1$ then for J < I, Cl(J) $= J \neq I =$ Cl(1), so $I \in \mathscr{I}_{Cl}$. If dim(1) = k then for J < I, Cl(J) $= I \neq E =$ Cl(1), so $I \in \mathscr{I}_{Cl}$. If dim(A) > k then there exists B < A, dim(B) = k, so Cl(B) = E =Cl(A) and $A \notin \mathscr{I}_{Cl}$.

A Cryptomorphism Between the Independence and Closure Axioms

Theorem (B., Ceria, Jurrius, 2021)

• Let $\operatorname{Cl} : \mathscr{L}(E) \longrightarrow \mathscr{L}(E)$ be a closure function. Then $(E, \mathscr{I}_{\operatorname{Cl}})$ satisfies (11)-(14).

(E, Cl) determines a q-matroid (E, r) whose set of independent spaces is

$$\mathscr{I}_{\mathrm{Cl}} := \{ X \le E : \mathrm{Cl}(X) \neq \mathrm{Cl}(A), A < X \}$$

and whose closure function satisfies $Cl_r = Cl$.

Let (E, I) satisfy (I1)-(I4). Define

$$r_{\mathscr{I}}:\mathscr{L}(E)\longrightarrow \mathbb{Z}:A\mapsto \max\{\dim(I):I\in\mathscr{I},I\subseteq A\}.$$

Then (E, \mathscr{I}) determines a q-matroid (E, r) whose closure function is $Cl_{\mathscr{I}} = Cl_r$ and whose set of independent spaces is \mathscr{I} .

More *q*-Cryptomorphisms

Circuit (Sets)	Circuits (Spaces)
(c1) Ø ∉ C.	(<i>C1</i>) 0 ∉ <i>C</i> .
(c2) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2 \implies C_1 \nsubseteq C_2.$	(C2) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2 \implies C_1 \nleq C_2.$
(c3) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2, x \in C_1 \cap C_2$	(C3) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2, x \leq C_1 \cap C_2$
$\implies \exists C_3 \in \mathscr{C} \text{ s.t. } C_3 \subseteq (C_1 \cup C_2) - \{x\}.$	$\implies \exists C_3 \in \mathscr{C} \text{ s.t. } C_3 \leq C_1 + C_2, x \not\leq C_3.$

Circuit (Sets)	Circuits (Spaces)
(c1) Ø ∉ C.	(C1) 0 ∉ C.
(c2) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2 \implies C_1 \nsubseteq C_2.$	(C2) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2 \implies C_1 \nleq C_2.$
(c3) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2, x \in C_1 \cap C_2$	(C3) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2, x \leq C_1 \cap C_2$
$\implies \exists C_3 \in \mathscr{C} \text{ s.t. } C_3 \subseteq (C_1 \cup C_2) - \{x\}.$	$\implies \exists C_3 \in \mathscr{C} \text{ s.t. } C_3 \leq C_1 + C_2, x \nleq C_3.$

In fact (C3) is too weak to define a q-matroid.

Circuit (Sets)	Circuits (Spaces)
(c1) $\emptyset \notin \mathscr{C}$.	(C1) 0 ∉ C.
(c2) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2 \implies C_1 \not\subseteq C_2.$	(C2) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2 \implies C_1 \nleq C_2.$
(c3) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2, x \in C_1 \cap C_2$	(C3) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2, x \leq C_1 \cap C_2$
$\implies \exists C_3 \in \mathscr{C} \text{ s.t. } C_3 \subseteq (C_1 \cup C_2) - \{x\}.$	$\implies \exists C_3 \in \mathscr{C} \text{ s.t. } C_3 \leq C_1 + C_2, x \nleq C_3.$

In fact (C3) is too weak to define a q-matroid.

Example

```
Let \mathscr{I} := \{0, \langle 1100 \rangle, \langle 0011 \rangle, \langle 1111 \rangle, \langle 1100, 0011 \rangle\} \subset \mathbb{F}_2^4.
```

 ${\mathscr C}$ is the collection of minimal dependent spaces.

Therefore, ${\mathscr C}$ is the set of 1-dim'l spaces not in ${\mathscr I}.$

Moreover, & satisfies (C1)-(C3).

As we saw before, (E, \mathscr{I}) does not define a *q*-matroid (it fails (I4) and (R3)).

Circuit (Sets)	Circuits (Spaces)
(c1) $\emptyset \notin \mathscr{C}$.	(C1) $0 \notin \mathscr{C}$.
(c2) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2 \implies C_1 \nsubseteq C_2.$	(C2) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2 \implies C_1 \nleq C_2.$
(c3) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2, x \in C_1 \cap C_2$	(C3) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2, X \leq C_1 + C_2 = D$
$\implies \exists C_3 \in \mathscr{C} \text{ s.t. } C_3 \subseteq (C_1 \cup C_2) - \{x\}.$	$\operatorname{codim}_D(X) = 1 \implies \exists C_3 \in \mathscr{C} \ s.t. \ C_3 \leq X.$

Circuit (Sets)	Circuits (Spaces)
(c1) $\emptyset \notin \mathscr{C}$.	(C1) $0 \notin \mathscr{C}$.
(c2) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2 \implies C_1 \nsubseteq C_2.$	(C2) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2 \implies C_1 \nleq C_2.$
(c3) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2, x \in C_1 \cap C_2$	(C3) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2, X \leq C_1 + C_2 = D$
$\implies \exists C_3 \in \mathscr{C} \text{ s.t. } C_3 \subseteq (C_1 \cup C_2) - \{x\}.$	$\operatorname{codim}_D(X) = 1 \implies \exists C_3 \in \mathscr{C} \ s.t. \ C_3 \leq X.$

The new (C3) implies the old (C3). But the old (C3) doesn't include enough of the codim 1 subspaces of $C_1 + C_2$.

Circuit (Sets)	Circuits (Spaces)
(c1) $\emptyset \notin \mathscr{C}$.	(C1) $0 \notin \mathscr{C}$.
(c2) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2 \implies C_1 \not\subseteq C_2.$	(C2) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2 \implies C_1 \nleq C_2.$
(c3) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2, x \in C_1 \cap C_2$	(C3) $C_1, C_2 \in \mathscr{C}, C_1 \neq C_2, X \leq C_1 + C_2 = D$
$\implies \exists C_3 \in \mathscr{C} \text{ s.t. } C_3 \subseteq (C_1 \cup C_2) - \{x\}.$	$\operatorname{codim}_D(X) = 1 \implies \exists C_3 \in \mathscr{C} \text{ s.t. } C_3 \leq X.$

The new (C3) implies the old (C3). But the old (C3) doesn't include enough of the codim 1 subspaces of $C_1 + C_2$.

Example

Let
$$\mathscr{I} := \{0, \langle 1100 \rangle, \langle 0011 \rangle, \langle 1111 \rangle, \langle 1100, 0011 \rangle\} \subset \mathbb{F}_2^4.$$

 $\mathscr C$ is the collection of minimal dependent spaces.

Therefore, ${\mathscr C}$ is the set of 1-dim'l spaces not in ${\mathscr I}.$

Moreover, \mathscr{C} satisfies (C1), (C2) but fails the new (C3).

Let $C_1 = \langle 1000 \rangle$, $C_2 = \langle 0111 \rangle$. Then $D = \langle 1111 \rangle$ has codim 1 in $C_1 + C_2$, but $D \in \mathscr{I}$, so the new (C3) fails.

Duality

Matroid	q-Matroid
Complement	Orthogonal Complement
$r^{*}(A) := A - r(E) + r(E - A)$	$r^*(A) := \dim(A) - r(E) + r(A^{\perp})$

Duality

Matroid	q-Matroid
Complement	Orthogonal Complement
$r^{*}(A) := A - r(E) + r(E - A)$	$r^*(A) := \dim(A) - r(E) + r(A^{\perp})$

• $A^{\perp} := \{x \in E : \langle x, a \rangle = 0 \ \forall a \in A\}$, $\langle \cdot, \cdot \rangle$ is a bilinear form on E.

•
$$A \in \mathscr{I}^* \Leftrightarrow r(A^{\perp}) = r(E).$$

• $M^{**} = M$.

Duality

Matroid	q-Matroid
Complement	Orthogonal Complement
$r^{*}(A) := A - r(E) + r(E - A)$	$r^*(A) := \dim(A) - r(E) + r(A^{\perp})$

•
$$A^{\perp} := \{x \in E : \langle x, a \rangle = 0 \ \forall a \in A\}, \langle \cdot, \cdot \rangle$$
 is a bilinear form on E .

•
$$A \in \mathscr{I}^* \Leftrightarrow r(A^{\perp}) = r(E).$$

•
$$M^{**} = M$$
.

Example (Jurrius, Pellikaan, 2018)

If M = M[G] for a $k \times n$ matrix G of rank k over \mathbb{F}_{q^m} then $M^* = M[H]$ for an $(n-k) \times n$ matrix H of rank n-k over \mathbb{F}_{q^m} s.t. $GH^T = 0$.

The dependent spaces of M are the supports of elements in nullspace(G) = row(H).

$$r^*(R_Y) = \operatorname{rk}(Y) - k + r(R_Y^{\perp}) = \operatorname{rk}(Y) - k + \operatorname{rk}(GX^{\top}) = \operatorname{rk}(HY^{\top}).$$

Contraction and Restriction

Matroid	q-Matroid
Restriction to $X \subseteq E$	Restriction to $X \leq E$
M X:=(X,r)	M X:=(X,r)
Deletion of $X \subseteq E$	Deletion of $X \leq E$
$M \setminus X := M (E - X)$	$M \backslash X := M X^{\perp}$
Contraction of $X \subseteq E$	Contraction of <i>X</i> ≤ <i>E</i>
$M/X := (E - X, r_{M/X})$	$M/X := (E/X, r_{M/X})$
$r_{M/X}(A) = r(A \cup X) - r(X)$	$r_{M/X}(A/X) = r(A) - r(X)$
$(M/T) := (M^*T)^*$	$(M/T)^* \cong M^* _{T^\perp}$

 $(M/T)^* \cong M^*|_{T^{\perp}}$ are lattice-equivalent.

The choice of bilinear forms used in duality gives different but equivalent matroids.

Theorem (B., Ceria, Ionica, Jurrius, Saçıkara, 2020)

Let \mathscr{S} be a q-Steiner system with blocks \mathscr{B} . Define the family

$$\mathscr{F} = \left\{ \bigcap_{B \in S} B : S \subseteq \mathscr{B} \right\}.$$

9 \mathscr{F} is the collection of flats of a q-perfect matroid design (E,r).

Theorem (B., Ceria, Ionica, Jurrius, Saçıkara, 2020)

Let \mathscr{S} be a q-Steiner system with blocks \mathscr{B} . Define the family

$$\mathscr{F} = \left\{ \bigcap_{B \in S} B : S \subseteq \mathscr{B} \right\}.$$

9 \mathscr{F} is the collection of flats of a q-perfect matroid design (E,r).

 $\circ r(A) = \begin{cases} \dim(A) & \text{if } \dim(A) \le t, \\ t & \text{if } \dim(A) > t \text{ and } A \text{ is contained in a block of } \mathcal{B}, \\ t+1 & \text{if } \dim(A) > t \text{ and } A \text{ is not contained in a block of } \mathcal{B}. \end{cases}$

Theorem (B., Ceria, Ionica, Jurrius, Saçıkara, 2020)

Let \mathscr{S} be a q-Steiner system with blocks \mathscr{B} . Define the family

$$\mathscr{F} = \left\{ \bigcap_{B \in S} B : S \subseteq \mathscr{B} \right\}.$$

9 \mathscr{F} is the collection of flats of a q-perfect matroid design (E,r).

$$\mathbf{O} \ r(A) = \begin{cases} \dim(A) & \text{if } \dim(A) \le t, \\ t & \text{if } \dim(A) > t \text{ and } A \text{ is contained in a block of } \mathcal{B}, \\ t+1 & \text{if } \dim(A) > t \text{ and } A \text{ is not contained in a block of } \mathcal{B} \end{cases}$$

- **③** $I \leq E$ is independent if
 - dim(I) ≤ t or
 dim(I) = t + 1 and I is not in a block of 𝔅.

Theorem (B., Ceria, Ionica, Jurrius, Saçıkara, 2020)

Let \mathscr{S} be a q-Steiner system with blocks \mathscr{B} . Define the family

$$\mathscr{F} = \left\{ \bigcap_{B \in S} B : S \subseteq \mathscr{B} \right\}.$$

9 \mathscr{F} is the collection of flats of a q-perfect matroid design (E,r).

 $\circ r(A) = \begin{cases} \dim(A) & \text{if } \dim(A) \le t, \\ t & \text{if } \dim(A) > t \text{ and } A \text{ is contained in a block of } \mathcal{B}, \\ t+1 & \text{if } \dim(A) > t \text{ and } A \text{ is not contained in a block of } \mathcal{B}. \end{cases}$

I ≤ E is independent if
 dim(I) ≤ t or
 dim(I) = t+1 and I is not in a block of ℬ.

• $C \leq E$ is a circuit if

- dim C = t + 1 and C is contained in a block of \mathcal{B} or
- b dim C = t + 2 and all (t + 1)-subspaces of C are contained in none of the blocks of \mathcal{B} .

Thank you!

Thank you!

- Byrne, Ceria, Jurrius, 'Constructions of New Cryptomorphisms,' 2021 (arXiv:2104.01486).
- Byrne, Ceria, Ionica, Jurrius, 'Weighted Subspace Designs from *q*-Polymatroids,' 2021 (arXiv:2104.12463).
- Jurrius, Pellikaan, 'Defining the *q*-analogue of a matroid,' Electronic Journal of Combinatorics, 25(3), 2018.