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q-Analogues
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q-Analogues in Coding Theory

Block codes - subspaces of Fnq −→ Matrix codes - subspaces of Fn×mq

Reed-Solomon Codes −→ Delsarte-Gabidulin Codes

Hamming metric −→ Rank metric

dH(x ,y) = |{i : xi 6= yi}| rk(X −Y )

Row space of a matrix −→ Slice space of a 3-tensor

MDS codes −→ MRD codes
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q-Analogues in Matroid Theory

Boolean lattice −→ Subspace Lattice

(2E ,∪,∩) (L (E),+,∩)

µ(0,x) = (−1)|x | µ(0,U) = (−1)dim(U)q(dim(U)
2 )

Matroid −→ q-Matroid

Polymatroid −→ q-Polymatroid
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Matroids
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Matroids

Matroids are objects that generalize concepts in graph theory and linear algebra.

Graphs: circuits, cycles, dual, contraction, deletion

Linear algebra: independence, bases, flats, closure, rank

Applications: information theory, secret sharing, distributed storage, coding theory,
combinatorial optimization

A matroid can be characterized as finite geometric lattice (its lattice of flats).

In fact a matroid can be equivalently determined by its flats, independent sets,
bases, hyperplanes, circuits, closure function, rank function etc.

These equivalent descriptions of a matroid are called cryptomorphisms.

Have a lot of different cryptomorphisms can be quite useful for defining and
characterizing matroids.
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Matroids and Rank Functions

Definition

A matroid is a pair (E , r) satisfying the following.

E is a finite set; 2E is the lattice of subsets of E

r : 2E → N0 is a rank function, s.t. for all A,B ∈ E :
(r1) 0≤ r(A)≤ |A|.
(r2) If A⊆ B then r(A)≤ r(B).
(r3) r(A∪B)+ r(A∩B)≤ r(A)+ r(B) (semimodularity).

Example

Let k be a positive integer, k ≤ n. Uk,n is the uniform matroid, with rank function:

r(U) :=

{
|U| if |U| ≤ k,

k if |U|> k.

(r3) If |A∪B| ≤ k then r(A∪B) + r(A∩B) = |A∪B|+ |A∩B|= |A|+ |B|= r(A) + r(B).
If |A|> k then r(A∪B) + r(A∩B) = k + r(A∩B)≤ k + r(B) = r(A) + r(B).
Etc
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Matroids

Definition

A matroid is a pair (E , r) satisfying

E is a finite set; 2E is the lattice of subsets of E

r : 2E → N0 is a rank function, s.t. for all A,B ∈ E :
(r1) 0≤ r(A)≤ |A|.
(r2) If A⊆ B then r(A)≤ r(B).
(r3) r(A∪B)+ r(A∩B)≤ r(A)+ r(B) (semimodularity).

Example

Let E = {1, . . . ,5}. Let A =

[
1 0 2 1 0

0 1 2 1 2

]
∈ F2×53 .

Define r(S) = dim(〈col(A,s) : s ∈ S〉).

Each singleton has rank 1. r({2,5}) = r({3,4}) = 1, r(S) = 2 for all other subsets.

We say that {2,5} and {3,4} are dependent sets.
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Flats, Circuits & Independent Spaces of a Matroid

Definition

Let M = (E , r) be a matroid. Let A⊆ E . A is called:

1 a flat if r(A∪{x}) > r(A) x ≤ E ,x 6≤ A,

2 independent if r(A) = |A|,
3 dependent if it is not independent,

4 a circuit if it is dependent and every proper subset of A is independent.

5 The closure of A is cl(A) := {x ∈ E : r(A∪{x}) = r(A)}.

Example

Let k be a positive integer, k ≤ n. Uk,n is the uniform matroid, with rank function:

r(U) :=

{
|U| if |U| ≤ k,

k if |U|> k.

A is independent if |A| ≤ k.

A is a circuit if |A|= k + 1.

A is a flat if |A| ≤ k−1 or if A = E .
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Axiom Systems

There are separate axiom systems that equivalently defines a matroid.

independence (i1)-(i3),

flats (f1)-(f3),

circuits (c1)-(c3),

closure (cl1)-(cl4),

Etc

(Independence Axioms)

Let I ⊆ 2E . I is a collection of independent sets if it satisfies the following.

(i1) /0 ∈I .

(i2) If I ⊆ J and J ∈I =⇒ I ∈I (decreasing).

(i3) If I ,J ∈I and |I | ≤ |J| then ∃ x ∈ J s.t {x}∪ I ∈I (augmentation).

For example, if I is a collection of independent spaces, then it defines a matroid (E , r)
whose set of independent sets is I . Conversely, if (E , r) is a matroid, its set of
independent sets satisfies (i1)− (i3).
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Cryptomorphisms with Duality

Bases

Independence

Spanning

Dependence

Non-spanning

Circuits

Hyperplanes

low

max

opp

opp

min

upp

upp

min

opp

opp

max

low

Duality Duality Duality

Duality
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q-Matroids
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Matroids −→ q-Matroids

Definition

A matroid is a pair (E , r) satisfying

E is a finite set; 2E is the lattice of subsets of E

r : 2E → N0 is a rank function, s.t. for all A,B ∈ E :
(r1) 0≤ r(A)≤ |A|.
(r2) If A⊆ B then r(A)≤ r(B).
(r3) r(A∪B)+ r(A∩B)≤ r(A)+ r(B) (semimodularity).

Definition

A q-matroid is a pair (E , r) satisfying

E is a finite dim’l vector space; L (E) is the lattice of subspaces of E

r : L (E)→ N0 is a rank function, s.t. for all A,B ≤ E :
(R1) 0≤ r(A)≤ dimA.
(R2) If A≤ B then r(A)≤ r(B).
(R3) r(A+B)+ r(A∩B)≤ r(A)+ r(B) (semimodularity).
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Representable q-Matroids

Every Fqm -linear rank metric code gives a q-matroid. [Jurrius, Pellikaan, 2018]

Let E = Fn
q and let G be a k×n matrix of rank k over Fqm .

Let A⊆ E and Y a matrix whose columns span A.

G Y GY

Then r(A) = rk(GY ) satisfies the axioms (R1), (R2), (R3).

This is a representable q-matroid.

Matrix codes for the rank metric give q-polymatroids.
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Flats, Circuits, Closure & Independent Spaces of a q-Matroid

Definition

Let M = (E , r) be a q-matroid. Let A≤ E . A is called:

1 a flat if r(A+x) > r(A) x ≤ E ,x 6≤ A,

2 independent if r(A) = dimA,

3 dependent if it is not independent,

4 a circuit if it is dependent and every proper subspace of A is independent.

5 The closure of A is cl(A) := max{F ≤ E : A≤ F , r(A+F ) = r(A)}.

Example

Let k be a positive integer, k ≤ n. Uk,n is the uniform q-matroid, with rank function:

r(U) :=

{
dim(U) if dim(U)≤ k,

k if dim(U) > k.

A is independent if dim(A)≤ k.

A is a circuit if dim(A) = k + 1.

A is a flat if dim(A)≤ k−1 or if A = E .
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Axioms
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Independence Axioms

Independent Sets Independent Spaces

(i1) /0 ∈I . (I1) 0 ∈I .

(i2) If I ⊆ J,J ∈I =⇒ I ∈I . (I2) If I ≤ J,J ∈I =⇒ I ∈I .

(i3) If I ,J ∈I , |I |< |J| then (I3) If I ,J ∈I , dim(I ) < dim(J) then

∃ x ∈ J\I s.t. {x}∪ I ∈I . ∃ x ≤ J,x 6≤ I , dim(x) = 1 s.t. I +x ∈I .

(I4) If I ≤ A, J ≤ B, I ,J ∈I , max’l in A,B

then A+B has a max’l ind. subspace in I +J.

Define
r(A) := max{dim(I ) : I ≤ A, I ∈I } for all A≤ E .

If (I1)-(I3) hold but (I4) does not, we can cook up examples violating submodularity.

Example

Let I := {0,〈1100〉,〈0011〉,〈1111〉,〈1100,0011〉} ⊂ F42. I satisfies (I1)-(I3), fails (I4).

Let A = 〈1100,0001〉, B = 〈1100,0010〉. So A+B = 〈1100,0011,0010〉, A∩B = 〈1100〉.

r(A+B) + r(A∩B) = 2 + 1 6≤ r(A) + r(B) = 1 + 1.
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Independence Axioms

Independent Sets Independent Spaces

(i1) /0 ∈I . (I1) 0 ∈I .

(i2) If I ⊆ J,J ∈I =⇒ I ∈I . (I2) If I ≤ J,J ∈I =⇒ I ∈I .

(i3) If I ,J ∈I , |I |< |J| then (I3) If I ,J ∈I , dim(I ) < dim(J) then

∃ x ∈ J\I s.t. {x}∪ I ∈I . ∃ x ≤ J,x 6≤ I , dim(x) = 1 s.t. I +x ∈I .

(I4) If I ≤ A, I ∈I , max’l in A, dim(x) = 1

then A+x has a max’l ind. subspace in I +x .

Define
r(A) := max{dim(I ) : I ≤ A, I ∈I } for all A≤ E .

If (I1)-(I3) hold but (I4) does not, we can cook up examples violating submodularity.

Example

Let I := {0,〈1100〉,〈0011〉,〈1111〉,〈1100,0011〉} ⊂ F42. I satisfies (I1)-(I3), fails (I4).
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r(A+B) + r(A∩B) = 3 6≤ 2 = r(A) + r(B).
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A Cryptomorphism Between the Independence and Rank Axioms

Theorem (Jurrius, Pellikaan 2018)

1 Let I be a family of subspaces of E that satisfies the flat axioms (I1)-(I4).
Then (E ,I ) determines a q-matroid (E , rI ) whose set of independent spaces is I .

2 Let (E , r) be a q-matroid with independent spaces Ir .
Then Ir satisfies axioms (I1)-(I4).

3 rIr
= r and I rI .

(E , r) (E ,I )

E. Byrne q-Matroids and their Cryptomorphisms June 3, 2021 20 / 30



Independent Spaces in a Representable q-Matroid

Let G ∈ Fk×nqm have rank k. Let Y ∈ Fr×n
q . If RY := rowFq

(Y ) then r(RY ) = rkFqm
(GY T ).

M[G ] := (Fn
q , r) is the representable q-matroid determined by (the rowspace of) G .

G is the generator matrix of an Fqm -[n,k] code C and is the PCM of an Fqm -[n,n−k]
code C⊥.

C⊥ = {y ∈ Fn
qm : GyT = 0}.

Let y ∈ Fnqm s.t. rk(y) := rkFq
(〈y1, . . . ,yn〉) = r . Then y = zY some z ∈ Fr

qm , rk(z) = r .

We say that y has support equal to RY .

So GyT = 0⇔ GY T zT = 0 =⇒ rkFqm
(GY T ) < r .

Conversely, rkFqm
(GY T ) < r =⇒ GY T vT = 0 some v ,⇔ GzT = 0,z = vY .

The dependent spaces of M[G ] are the supports of the members of C⊥.

A space is independent in M[G ] iff it is not the support of an element of C⊥.
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Closure Axioms

cl : 2E −→ 2E Cl : L (E)−→L (E)

(cl1) A⊆ cl(A). (Cl1) A≤ cl(A).

(cl2) A⊆ B =⇒ cl(A)⊆ cl(B). (Cl2) A≤ B =⇒ cl(A)≤ cl(B).

(cl3) cl(A) = cl(cl(A)). (Cl3) cl(A) = cl(cl(A)).

(cl4) If y ⊆ cl(A+x) and y 6⊆ cl(A) (Cl4) If y ≤ cl(A+x) and y 6≤ cl(A)

then x ⊆ cl(A+y). then x ≤ cl(A+y).

Icl := {X ⊆ E : e /∈ cl(X − e) any e ∈ X} ICl := {X ≤ E : Cl(X ) 6= Cl(A),A< X}

Example

Let 1≤ k ≤ n. Define a map

Cl : Fn
q −→ Fnq : A 7→

{
A if dim(A)≤ k−1

E otherwise

If dim(I )≤ k−1 then for J < I , Cl(J) = J 6= I = Cl(I ), so I ∈ICl.

If dim(I ) = k then for J < I , Cl(J) = I 6= E = Cl(I ), so I ∈ICl.

If dim(A) > k then there exists B < A, dim(B) = k, so Cl(B) = E = Cl(A) and A /∈ICl.
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A Cryptomorphism Between the Independence and Closure Axioms

Theorem (B., Ceria, Jurrius, 2021)

1 Let Cl : L (E)−→L (E) be a closure function. Then (E ,ICl) satisfies (I1)-(I4).

2 (E ,Cl) determines a q-matroid (E , r) whose set of independent spaces is

ICl := {X ≤ E : Cl(X ) 6= Cl(A),A< X}

and whose closure function satisfies Clr = Cl.
3 Let (E ,I ) satisfy (I1)-(I4). Define

rI : L (E)−→ Z : A 7→max{dim(I ) : I ∈I , I ⊆ A}.

Then (E ,I ) determines a q-matroid (E , r) whose closure function is ClI = Clr and
whose set of independent spaces is I .

(E ,Cl) (E , r) (E ,I )
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More q-Cryptomorphisms

ClosureFlat

Open space

Rank Independence

SpanningBasis

Circuit

Bi-colourings

Hyperplane

Dependence

Non-spanning

BCJ21

BCJ21

BCJ21

BCJ21

BCJ21

BCJ21

BCJ21BCJ21

BCJ21

BCIJS20

JP18

JP18BCJ21

JP18

BollenCrapoJ17
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Circuit Axioms

Circuit (Sets) Circuits (Spaces)

(c1) /0 /∈ C . (C1) 0 /∈ C .

(c2) C1,C2 ∈ C ,C1 6= C2 =⇒ C1 6⊆ C2. (C2) C1,C2 ∈ C ,C1 6= C2 =⇒ C1 6≤ C2.

(c3) C1,C2 ∈ C ,C1 6= C2,x ∈ C1∩C2 (C3) C1,C2 ∈ C ,C1 6= C2,x ≤ C1∩C2

=⇒ ∃C3 ∈ C s.t. C3 ⊆ (C1∪C2)−{x}. =⇒ ∃C3 ∈ C s.t. C3 ≤ C1 +C2,x 6≤ C3.

In fact (C3) is too weak to define a q-matroid.

Example

Let I := {0,〈1100〉,〈0011〉,〈1111〉,〈1100,0011〉} ⊂ F42.

C is the collection of minimal dependent spaces.

Therefore, C is the set of 1-dim’l spaces not in I .

Moreover, C satisfies (C1)-(C3).

As we saw before, (E ,I ) does not define a q-matroid (it fails (I4) and (R3)).
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(c3) C1,C2 ∈ C ,C1 6= C2,x ∈ C1∩C2 (C3) C1,C2 ∈ C ,C1 6= C2, X ≤ C1 +C2 = D

=⇒ ∃C3 ∈ C s.t. C3 ⊆ (C1∪C2)−{x}. codimD(X ) = 1 =⇒ ∃C3 ∈ C s.t. C3 ≤ X .

The new (C3) implies the old (C3). But the old (C3) doesn’t include enough of the
codim 1 subspaces of C1 +C2.

Example

Let I := {0,〈1100〉,〈0011〉,〈1111〉,〈1100,0011〉} ⊂ F42.

C is the collection of minimal dependent spaces.

Therefore, C is the set of 1-dim’l spaces not in I .

Moreover, C satisfies (C1), (C2) but fails the new (C3).

Let C1 = 〈1000〉,C2 = 〈0111〉. Then D = 〈1111〉 has codim 1 in C1 +C2, but D ∈I , so
the new (C3) fails.
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Duality

Matroid q-Matroid

Complement Orthogonal Complement

r∗(A) := |A|− r(E) + r(E −A) r∗(A) := dim(A)− r(E) + r(A⊥)

A⊥ := {x ∈ E : 〈x ,a〉= 0 ∀a ∈ A}, 〈·, ·〉 is a bilinear form on E .

A ∈I ∗⇔ r(A⊥) = r(E).

M∗∗ = M.

Example (Jurrius, Pellikaan, 2018)

If M = M[G ] for a k×n matrix G of rank k over Fqm then M∗ = M[H] for an (n−k)×n
matrix H of rank n−k over Fqm s.t. GHT = 0.

The dependent spaces of M are the supports of elements in nullspace(G) = row(H).

r∗(RY ) = rk(Y )−k + r(R⊥Y ) = rk(Y )−k + rk(GXT ) = rk(HY T ).
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If M = M[G ] for a k×n matrix G of rank k over Fqm then M∗ = M[H] for an (n−k)×n
matrix H of rank n−k over Fqm s.t. GHT = 0.

The dependent spaces of M are the supports of elements in nullspace(G) = row(H).

r∗(RY ) = rk(Y )−k + r(R⊥Y ) = rk(Y )−k + rk(GXT ) = rk(HY T ).
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Contraction and Restriction

Matroid q-Matroid

Restriction to X ⊆ E Restriction to X ≤ E

M|X := (X , r) M|X := (X , r)

Deletion of X ⊆ E Deletion of X ≤ E

M\X := M|(E −X ) M\X := M|X⊥

Contraction of X ⊆ E Contraction of X ≤ E

M/X := (E −X , rM/X ) M/X := (E/X , rM/X )

rM/X (A) = r(A∪X )− r(X ) rM/X (A/X ) = r(A)− r(X )

(M/T ) := (M∗T)∗ (M/T )∗ ∼= M∗|T⊥

(M/T )∗ ∼= M∗|T⊥ are lattice-equivalent.

The choice of bilinear forms used in duality gives different but equivalent matroids.
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q-Matroids Induced by q-Steiner Systems - Defining a Matroid by Flats

Theorem (B., Ceria, Ionica, Jurrius, Saçıkara, 2020)

Let S be a q-Steiner system with blocks B. Define the family

F =

{ ⋂
B∈S

B : S ⊆B

}
.

1 F is the collection of flats of a q-perfect matroid design (E , r).

2 r(A) =


dim(A) if dim(A)≤ t,

t if dim(A) > t and A is contained in a block of B,

t + 1 if dim(A) > t and A is not contained in a block of B.

3 I ≤ E is independent if
I dim(I )≤ t or
I dim(I ) = t+1 and I is not in a block of B.

4 C ≤ E is a circuit if
I dimC = t+1 and C is contained in a block of B or
I dimC = t+2 and all (t+1)-subspaces of C are contained in none of the blocks of B.
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Thank you!
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