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Set systems

A k-set system is a collection of subsets from {1, 2, . . . , n} in which each
subset has size k.
A k-set system is intersecting if for all sets A,B in the system

A ∩B 6= ∅.

An intersecting 3-set system from {1, . . . , 6}:

123 124 125 126 134
135 136 234 235 236

In this system, every set has at least 2 elements from {1, 2, 3}.

Another intersecting 3-set system from {1, . . . , 6}:

123 124 125 126 134
135 136 145 146 156

In this system, every set has the element 1.



Canonical Intersecting Set Systems

The easiest intersecting k-set system is the collection of all k-subsets that
contain a fixed element.

1 ∗ ∗ . . . ∗︸ ︷︷ ︸
k−1 entries

This is called a canoncial intersecting k-set system and has size(
n− 1

k − 1

)
.

Is the canonical intersecting system the largest intersecting system?

Are there intersecting set systems of size
(
n−1
k−1
)
, other than the canonical set

system?



The Answer

Theorem (Erdős-Ko-Rado Theorem)
Let A be an intersecting k-set system on an n-set. If n > 2k, then

1 |A| ≤
(
n−1
k−1
)
,

2 and A meets this bound if and only if it is canonically intersecting.

Theorem (Erdős-Ko-Rado Theorem for t-intersecting)
Let A be a t-intersecting k-set system on an n-set. If n is large relative to t
and k, then

1 |A| ≤
(
n−t
k−t
)
,

2 A meets this bound if and only if it is canonically t-intersecting.

Canonical t-intersecting: 1 2 . . . t ∗ ∗ . . . ∗︸ ︷︷ ︸
k−t entries



Kneser Graph

Define the Kneser graph K(n, k)

1 vertices are k-subsets of {1, . . . , n};
2 two k-sets are adjacent if they are disjoint.

An independent set/coclique in K(n, k) is an intersecting set system.

What is the largest coclique in this graph?

What is the structure of a largest coclique in this graph?



Good Ol’Pete
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Figure: The Kneser Graph K(5, 2), or our old friend Petersen.



Properties of K(n, k)

1 There are
(
n
k

)
vertices, each vertex has degree

(
n−k
k

)
.

2 It is vertex transitive and edge transitive.
3 A coclique (independent set) is an intersecting set.



Algebraic Graph theory

1 We can represent a graph X as a matrix A(X).
2 Rows and columns are vertices (in the same order) and the
3 u, v entry of A(X) is 1 if u and v are adjacent, and 0 otherwise.

Example for Kneser graph K(5, 2):



12 13 14 15 23 24 25 34 35 45

12 0 0 0 0 0 0 0 1 1 1
13 0 0 0 0 0 1 1 0 0 1
14 0 0 0 0 1 0 1 0 1 0
15 0 0 0 0 1 1 0 1 0 0
23 0 0 1 1 0 0 0 0 0 1
24 0 1 0 1 0 0 0 0 1 0
25 0 1 1 0 0 0 0 1 0 0
34 1 0 0 1 0 0 1 0 0 0
35 1 0 0 1 0 1 0 0 0 0
45 1 1 0 0 1 0 0 0 0 0





Hoffman’s bound/Delsarte’s bound/Ratio bound

The characteristic vector of a set of vertices S in a graph is a 01-vector of
length-|V (G)|; the v-entry is 1 if v ∈ S, and 0 otherwise. Denoted by vS .

Ratio Bound
If X is a d-regular graph then

α(X) ≤ |V (X)|
1− d

τ

where τ is the least eigenvalue for the adjacency matrix for X.

If equality holds and S is a coclique of maximum size, then

vS −
|S|
|V (X)|

1

is a τ -eigenvector.



Ratio Bound for Kneser Graph

Bound on the size of a coclique in Kneser graph:

α(K(n, k)) ≤
(
n
k

)
1− (n−k

k )
−(n−k−1

k−1 )

=

(
n− 1

k − 1

)
.

Characterization:
Let vi be the characteristic vector of the collection of all sets that contain
i. The vectors vi − k

n1 are −
(
n−k−1
k−1

)
-eigenvectors.

vi span the
(
n−k
k

)
-eigenspace and the −

(
n−k−1
k−1

)
-eigenspace.

The characteristic vector for any maximum coclique is a linear
combination of the vi.
If n > 2k, the only linear combinations that give 01-vector with weight(
n−1
k−1
)

is vi.

Can do this for t-intersection too, using a weighted adjacency matrix.



Intersecting Permutations

Two permutations σ, π ∈ Sym(n) intersect if for some i ∈ {1, . . . , n}.

σ(i) = π(i) or π−1σ(i) = i.

1 A permutation is a derangement if it fixes no points.
2 Permutations σ and π are intersecting if and only if π−1σ is not a

derangement.



Intersecting Permutations

What is the size of the largest set of intersecting permutations?

What is the structure of the largest set of intersecting permutations?

The canonical intersecting sets are

Si,j = {σ ∈ Sym(n) | iσ = j}.

1 If i = j, then Si,i is the stabilizer of i (this is a subgroup),
2 if i 6= j it is a coset of a subgroup.
3 Si,j is an intersecting set of size (n− 1)!.
4 Use vi,j for the characteristic vector of Si,j .



A Simple Bound

Consider the following partition of the permutations in Sym(4):

(1) (1,2,3,4) (1,3)(2,4) (1,4,3,2)
(1,2) (1,3,4) (1,4,2,3) (2,4,3)
(1,3) (1,4)(2,3) (1,2)(3,4) (2,4)
(1,4) (2,3,4) (1,3,2) (1,2,4,3)
(2,3) (1,2,4) (1,3,4,2) (1,4,3)
(3,4) (1,2,3) (1,3,2,4) (1,4,2)

1 The first row is the sharply transitive group C4 = 〈(1, 2, 3, 4)〉.
2 No two permutations intersect in the first row.
3 The other rows are cosets of this subgroup; no two permutations

intersect in a row.

Any maximum intersecting set of permutations will size at most 4!
4 = 3!.



Canonical Intersecting

Theorem (Deza and Frankl, 1977)
The size of the largest set of intersecting permutations is (n− 1)!

Are there intersecting sets of permutation in Sym(n) with size (n− 1)! that are
not canonical intersecting sets?



The Erdős-Ko-Rado Theorem for Permutations

Theorem
Let P be an intersecting set of permutations from Sym(n), then

1 |P| ≤ (n− 1)!,
2 and P meets this bound if and only if it is a canonically intersecting set of

permutations.

There are several proofs of this result.
Cameron and Ku, 2003
Larose and Malvenuto, 2004 (More general result)
Wang and Zhang, 2007 (Clever use of clique-coclique bound)
Godsil and Meagher, 2009 (Algebraic method, like Wilson’s)



What about different groups?

A group has the EKR-property if the size of the largest set of intersecting
permutations is the size of the largest stabilizer of a point.

A group has the strict-EKR property if the only maximum intersecting
permutations are the stabilizer of a point or a coset of one.

^ These properties depend on the action of the group.^

Example
Sym(n) with its natural action on {1, . . . , n} has the strict-EKR property.



A non-EKR group

Example
The group Sym(8) acting on the ordered 4-sets from {1, . . . , 8} does not have
the EKR property.
The set of all permutations that fix at least 5 of [1..6] is intersecting and bigger.

Subgroup that fixes the elements {1, 2, 3, 4} has size 4! = 24.

The set that fixes at least 5 of {1, 2, 3, 4, 5, 6}(
6

6

)
2︸ ︷︷ ︸

Fix all 6 elements.

+

(
6

5

)
︸︷︷︸

Pick 5 fixed elements.

(2)︸︷︷︸
Non-fixed to 7 or 8.

(2)︸︷︷︸
Place 7 and 8.

= 26



Derangement Graph

For any G ≤ Sym(n) we can define a Derangement Graph.
ΓG denotes the derangement graph for a group G.
The vertices are the elements of G.
Vertices σ, π ∈ G are adjacent if and only if π−1σ is a derangement.
(So adjacent if not intersecting.)

The derangement graph depends on the action!

An intersecting set in G is a coclique in ΓG.



Derangement Graph of Z7

(1, 3, 5, 7, 2, 4, 6)

(1, 2, 3, 4, 5, 6, 7)
e

(1, 7, 6, 5, 4, 3, 2)

(1, 6, 4, 2, 7, 5, 3)

(1, 5, 2, 6, 3, 7, 4)

(1, 4, 7, 3, 6, 2, 5)

The graph ΓZ7
.



Derangement Graph of Dihedral Group

e

(1, 2, 3, 4)

(2, 4)

(1, 2)(3, 4)

(1, 3)(2, 4)

(1, 4, 3, 2)

(1, 3)

(1, 4)(2, 3)

The graph ΓD(4).



Derangement Graph for Sym(4)



Properties of the Derangement Graph

ΓG is vertex transitive.
An intersecting set in G is a coclique in ΓG.
If G has a sharply 1-transitive set, then ΓG has a clique of size n.
Clique-coclique bound for a vertex transitive graph X

α(X) ≤ |V (X)|
ω(X)

.

If G ≤ Sym(n) has a sharply 1-transitive subgroup, then |Si,j | = |G|
n and the

canonical intersecting sets are maximum.



Cayley Graphs

Let G be a group and C a subset of G. Define the Cayley Graph Cay(G,C) to
be the graph with

the vertices elements of G,
and g, h are adjacent if gh−1 is in the set C.

1 A Cayley graph Cay(G,C) is a normal Cayley graph if C is closed under
conjugation.

2 If der(G) is the set of derangements in G, then

ΓG = Cay(G, der(G)).

so ΓG is a normal Cayley graph with connection set Der(G) the set of
derangements of G.

3 ΓG is connected if and only if the derangements generate the group.
4 ΓG is a union of graphs in that conjugacy class association scheme.



Eigenvalues of Cayley Graphs

Theorem
If Cay(G,C) is a normal Cayley graph, then the eigenvalues of Cay(G,C) are

1
χ(1)

∑
σ∈C

χ(σ)

where χ is an irreducible character of G.

Example
Let 1 be the trivial character for G, then

λ1 =
1

1(1)

∑
g∈der(G)

1(g) = |der(G)| = d.

This is the degree of the derangement graph.



Frobenius Groups

Example
If G ≤ Sym(n) is a Frobenius group, then the spectrum of ΓG is

{n− 1(k), −1k(n−1)}.

The derangement graph of any Frobenius group is the union of k complete
graphs on n vertices.

1 Any Frobenius group has the EKR property.
2 If k > 2 then it does not have the strict EKR property.

There are nk maximum cocliques, and n2 canonical cocliques.



Frobenius

Example
Let G = PGL(2, q), the characters can be calculated:

Character λ1 λ−1 ψ1 ψ−1 ηβ νγ

Eigenvalue q2(q−1)
2

−q(q−1)
2

−q(q−1)
2

q−1
2 q 0

1 PGL(2, q) has the EKR property.
Use the ratio bound.

2 PGL(2, q) has the strict-EKR property.
First, no coclique is in the ψ1-eigenspace.
Second, any coclique in the λ1-eigenspace is a canonical coclique.



2-Transitive Subgroups

1 The permutation character is fix(g).
2 Define χ(g) = fix(g)− 1 (So χ = permutation − trivial).
3 G is 2-transitive if and only if χ is irreducible.

〈χ, χ〉 =
1

|G|
∑
g∈G

(|fix(g)| − 1)2

=
1

|G|
∑
g∈G
|fix(g)|2 − 2

1

|G|
∑
g∈G
|fix(g)|+ 1

|G|
∑
g∈G

1 = 1

4 The eigenvalue for χ is

λχ =
1

χ(1)

∑
g∈Der(G)

χ(g) =
−|Der(G)|
n− 1

5 Define Eχ[g, h] = χ(h−1g); the permutation module is the span of the
columns of Eχ and E1 (the all ones vector).



Apply the Ratio Bound

Theorem
Let G be a 2-transitive group acting on an n-set. If −|Der(G)|

n−1 is the least
eigenvalue for ΓG, then the largest intersecting set has size |G|n

Proof. By the ratio bound

α(ΓG) ≤ |G|
1− |Der(G)|

− |Der(G)|
n−1

=
|G|
n
.

Since G is transitive, then the stabilizer of a point has size |G|/n.

Theorem
Further, if only χ has eigenvalue −|Der(G)|

n−1 , then the characteristic vector of
any maximum coclique S is in the permutation module.



Overview of Method

Assume that G is a group with a 2-transitive action on a set of size n.
1 Prove the bound α(ΓG) ≤ |G|n holds.

I If G has a sharply transitive group, use clique-coclique bound.
I Use ratio bound with A(ΓG),
I Use ratio bound with a weighted adjacency matrix.

2 Show the characteristic vector for any maximum coclique is a linear
combination of the vectors vi,j .

I The vectors vi,j span the ψ-module.
I Show the characteristic vector for any maximum coclique is in this ψ-module.

3 Find all 01-vectors that are linear combinations vi,j with exactly |G|n ones.
I Reduces to showing matrix has full rank.
I or finding the kernel of this matrix.



3-types of EKR properties

A group G has the EKR property if the size of the maximum intersecting
permutations is the size of the largest stabilizer of a point.

A group G has the EKR-module property if the characteristic vector of any
maximum intersecting set is in the ψ-module.

A group G is strict-EKR if the only maximum intersecting permutations are the
stabilizer of a point, or a coset of one.



EKR Property for 2-transitive group

Theorem (M, Spiga, Tiep)
All two transitive groups have the EKR property.

First we used the two reductions:
1 if a group has a sharply 1-transitive subgroup then it has the EKR

property.
2 if G has a transitive subgroup H with the EKR property, then G has the

EKR property.

A 2-transitive group G has a unique minimal normal subgroup ; either this
subgroup is regular, or G is of almost simple type.



Table of 2-transtive groups of almost simple type

Line Group S Degree Condition on G Remarks
1 Alt(n) n Alt(n) ≤ G ≤ Sym(n) n ≥ 5

2 PSLn(q) qn−1
q−1 PSLn(q) ≤ G ≤ PΓLn(q) n ≥ 2, (n, q) 6= (2, 2), (2, 3)

3 Sp2n(2) 2n−1(2n − 1) G = S n ≥ 3
4 Sp2n(2) 2n−1(2n + 1) G = S n ≥ 3
5 PSU3(q) q3 + 1 PSU3(q) ≤ G ≤ PΓU3(q) q 6= 2
6 Sz(q) q2 + 1 Sz(q) ≤ G ≤ Aut(Sz(q)) q = 22m+1, m > 0
7 Ree(q) q3 + 1 Ree(q) ≤ G ≤ Aut(Ree(q)) q = 32m+1, m > 0
8 Mn n Mn ≤ G ≤ Aut(Mn) n ∈ {11, 12, 22, 23, 24},

Mn Mathieu group,
G = S or n = 22

9 M11 12 G = S
10 PSL2(11) 11 G = S
11 Alt(7) 15 G = S
12 PSL2(8) 28 G = PΣL2(8)
13 HS 176 G = S HS Higman-Sims group
14 Co3 276 G = S Co3 third Conway group



Strict-EKR for 2-transitive groups

1 Sym(n) has strict EKR-property. (Cameron and Ku, Godsil and M.)
2 For PGL(n, q)

I for n = 2 has the strict-EKR property (M. and Spiga);
I for n ≥ 3 the maximum intersecting sets are either stabilizers of a point or a

hyperplane (M. and Spiga, Spiga).
3 PSL(2, q) has the strict-EKR property (Long, Plaza, Sin, Xiang).
4 Alt(n) and the Mathieu groups have the strict EKR (Ahmadi, M.).
5 M11 on 12 points has strict EKR
6 PSL2(11) on 11 and Alt(7) on 15 do not have strict EKR.

Fact
Not all two transitive groups have the strict-EKR property.



Every 2-transitive group has the EKR-module Property

A group has the EKR-module property if the characteristic vector of any
maximum intersecting set in in the permutation module.

Theorem (M., Sin)
All 2-transitive groups have the EKR module property.

Corollary
For any 2-transitive group, the characteristic vector of any maximum
intersecting set is a linear combination of the vi,j .



Intersecting Subgroups

Let G be a 2-transitive group and S a maximum intersecting set.
1 S has the same inner distribution as the stabilizer of a point.

(The inner distribution is the number of pairs of elements g, h ∈ S with in
gh−1 in a conjugacy class.)

2 If S is a group, then
ind(1S)G = ind(1Gx

)G

When does a group have non-conjugate subgroups that give the same
induced representation?

For a 2-transitive group, are the maximum intersecting sets always subgroups
or cosets of subgroups?



Intersection density

For a permutation group G (maybe make it transitive?) define the ratio of the
size of a largest intersecting set to the size of a canonical intersecting set.

I(G) = α(ΓG)/|Gx|.

1 This ratio is 1 if and only if G has the EKR property.
2 If G is 2-transitive, then I(G) = 1.
3 If G acts on a set with prime order then I(G) = 1.

(G has an element with order p, so a clique of size p.)

How big can this ratio be?

Recently Li, Song and Pantangi conjectured if G ≤ Sym(n) is transitive then

α(ΓG)/|Gx| ≤
√
n.

They gave an example of a family of groups where this holds asymptotically.



Other Interesting Examples

Example (Razafimahatratra)
There is a group G ≤ Sym(18) with |G| = 324 and ΓG = K108,108,108.

1 Maximum cocliques are 6 times larger than the stabilizer of a point.
2 This group has α(ΓG)/|Gx| = 6 (largest that we have found!).

There other are groups with

ΓG = K`,`,...,`

1 the cocliques are much bigger than the stabilizer of a point.
2 G is imprimitive
3 These groups have the EKR-module property!

But, we only found 4 groups that have their derangement graph a complete
tripartite graph. (Only 3 are counter examples to the conjecture.)



Other Results

Theorem (M., Razafimahatratra and Spiga)
A derangement graph for a transitive group G ≤ Sym(n) with n > 2 is not
bipartite.

Proof.
1 If ΓG is bipartite, then its parts are H and xH where H is a normal

subgroup G.
2 H has a normal covering number of 2, these have been mostly

characterized.

Theorem (M., Razafimahatratra and Spiga)
A derangement graph for a transitive group must have a clique of size 3.



Questions I am thinking about

Is it true that for any 2-transitive group that any maximum intersecting set of
permutations is either a group or a coset of group?

For 2-transitive groups, what are the boolean vectors in the χ-module? These
can be considered to be the “Cameron-Leibler” sets for permutations.

Which 1-transitive groups have “interesting” intersecting set of permutations?

In a transitive group what is the largest set of permutations that is closed
under taking conjugation?
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