Erdős-Ko-Rado Theorems for Groups

Karen Meagher (joint work with Bahman Ahmadi, Chris Godsil, Alison Purdy, Sarobidy Razafimahatratra, Peter Sin, Pablo Spiga and Pham Huu Tiep)

> Department of Mathematics and Statistics University of Regina

WinCom Virtual Colloquium, Mar. 25, 2021

Set systems

- A *k-set system* is a collection of subsets from $\{1, 2, ..., n\}$ in which each subset has size *k*.
- A k-set system is *intersecting* if for all sets A, B in the system

 $A \cap B \neq \emptyset.$

An intersecting 3-set system from $\{1, \ldots, 6\}$:

123	124	125	1 <mark>2</mark> 6	134
1 <mark>3</mark> 5	1 <mark>3</mark> 6	<mark>23</mark> 4	<mark>23</mark> 5	<mark>23</mark> 6

In this system, every set has at least 2 elements from $\{1, 2, 3\}$.

Another intersecting 3-set system from $\{1, \ldots, 6\}$:

123	124	125	126	134
135	136	145	146	156

In this system, every set has the element 1.

Canonical Intersecting Set Systems

The easiest intersecting k-set system is the collection of all k-subsets that contain a fixed element.

This is called a *canoncial* intersecting k-set system and has size

 $\binom{n-1}{k-1}.$

Is the canonical intersecting system the largest intersecting system?

Are there intersecting set systems of size $\binom{n-1}{k-1}$, other than the canonical set system?

The Answer

Theorem (Erdős-Ko-Rado Theorem)

Let \mathcal{A} be an intersecting k-set system on an n-set. If n > 2k, then $|\mathcal{A}| \le {n-1 \choose k-1}$,

and A meets this bound if and only if it is canonically intersecting.

Theorem (Erdős-Ko-Rado Theorem for t-intersecting)

Let A be a *t*-intersecting *k*-set system on an *n*-set. If *n* is large relative to *t* and *k*, then

- $|\mathcal{A}| \leq \binom{n-t}{k-t},$
- A meets this bound if and only if it is canonically t-intersecting.

Canonical *t*-intersecting: $\underline{1} \underline{2} \dots \underline{t} \underbrace{* \underline{*} \dots \underline{*}}_{k-t \text{ entries}}$

Define the Kneser graph K(n,k)

- vertices are k-subsets of $\{1, \ldots, n\}$;
- two k-sets are adjacent if they are disjoint.

An independent set/coclique in K(n,k) is an intersecting set system.

What is the largest coclique in this graph?

What is the structure of a largest coclique in this graph?

Good Ol'Pete

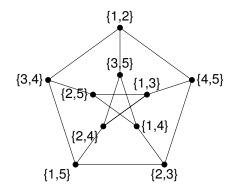


Figure: The Kneser Graph K(5, 2), or our old friend Petersen.

- There are $\binom{n}{k}$ vertices, each vertex has degree $\binom{n-k}{k}$.
- It is vertex transitive and edge transitive.
- A coclique (independent set) is an intersecting set.

Algebraic Graph theory

- We can represent a graph X as a matrix A(X).
- Rows and columns are vertices (in the same order) and the
- **(a)** u, v entry of A(X) is 1 if u and v are adjacent, and 0 otherwise.

Example for Kneser graph K(5,2):

	12	13	14	15	23	24	25	34	35	45
12	0	0	0	0	0	0	0	1	1	1
13	0	0	0	0	0	1	1	0	0	1
14	0	0	0	0	1	0	1	0	1	0
15	0	0	0	0	1	1	0	1	0	0
23	0	0	1	1	0	0	0	0	0	1
24	0	1	0	1	0	0	0	0	1	0
25	0	1	1	0	0	0	0	1	0	0
34	1	0	0	1	0	0	1	0	0	0
35	1	0	0	1	0	1	0	0	0	0
45	$\begin{pmatrix} 1 \end{pmatrix}$	1	0	0	1	0	0	0	0	0 /

Hoffman's bound/Delsarte's bound/Ratio bound

The **characteristic vector** of a set of vertices *S* in a graph is a 01-vector of length-|V(G)|; the *v*-entry is 1 if $v \in S$, and 0 otherwise. Denoted by v_S .

Ratio Bound

If X is a d-regular graph then

$$\alpha(X) \le \frac{|V(X)|}{1 - \frac{d}{\tau}}$$

where τ is the least eigenvalue for the adjacency matrix for X.

If equality holds and \boldsymbol{S} is a coclique of maximum size, then

$$v_S - rac{|S|}{|V(X)|} \mathbf{1}$$

is a τ -eigenvector.

Ratio Bound for Kneser Graph

Bound on the size of a coclique in Kneser graph:

$$\alpha(K(n,k)) \le \frac{\binom{n}{k}}{1 - \frac{\binom{n-k}{k}}{-\binom{n-k-1}{k-1}}} = \binom{n-1}{k-1}.$$

Characterization:

- Let v_i be the characteristic vector of the collection of all sets that contain *i*. The vectors $v_i \frac{k}{n}\mathbf{1}$ are $-\binom{n-k-1}{k-1}$ -eigenvectors.
- v_i span the $\binom{n-k}{k}$ -eigenspace and the $-\binom{n-k-1}{k-1}$ -eigenspace.
- The characteristic vector for any maximum coclique is a linear combination of the *v*_i.
- If n > 2k, the only linear combinations that give 01-vector with weight $\binom{n-1}{k-1}$ is v_i .

Can do this for *t*-intersection too, using a weighted adjacency matrix.

Two permutations $\sigma, \pi \in \text{Sym}(n)$ *intersect* if for some $i \in \{1, ..., n\}$.

$$\sigma(i) = \pi(i)$$
 or $\pi^{-1}\sigma(i) = i$.

- A permutation is a *derangement* if it fixes no points.
- Permutations σ and π are intersecting if and only if π⁻¹σ is not a derangement.

Intersecting Permutations

What is the size of the largest set of intersecting permutations?

What is the structure of the largest set of intersecting permutations?

The canonical intersecting sets are

$$S_{i,j} = \{ \sigma \in \operatorname{Sym}(n) \, | \, i^{\sigma} = j \}.$$

- **1** If i = j, then $S_{i,i}$ is the stabilizer of i (this is a subgroup),
- 2 if $i \neq j$ it is a coset of a subgroup.
- $S_{i,j}$ is an intersecting set of size (n-1)!.
- Use $v_{i,j}$ for the characteristic vector of $S_{i,j}$.

A Simple Bound

Consider the following partition of the permutations in Sym(4):

(1)	(1,2,3,4)	(1,3)(2,4)	(1,4,3,2)
(1,2)	(1,3,4)	(1,4,2,3)	(2,4,3)
(1,3)	(1,4)(2,3)	(1,2)(3,4)	(2,4)
(1,4)	(2,3,4)	(1,3,2)	(1,2,4,3)
(2,3)	(1,2,4)	(1,3,4,2)	(1,4,3)
(3,4)	(1,2,3)	(1,3,2,4)	(1,4,2)

- The first row is the sharply transitive group $C_4 = \langle (1, 2, 3, 4) \rangle$.
- On two permutations intersect in the first row.
- The other rows are cosets of this subgroup; no two permutations intersect in a row.

Any maximum intersecting set of permutations will size at most $\frac{4!}{4} = 3!$.

Theorem (Deza and Frankl, 1977)

The size of the largest set of intersecting permutations is (n-1)!

Are there intersecting sets of permutation in Sym(n) with size (n-1)! that are not canonical intersecting sets?

The Erdős-Ko-Rado Theorem for Permutations

Theorem

Let \mathcal{P} be an intersecting set of permutations from $\operatorname{Sym}(n)$, then

- $|\mathcal{P}| \le (n-1)!,$
- and P meets this bound if and only if it is a canonically intersecting set of permutations.

There are several proofs of this result.

- Cameron and Ku, 2003
- Larose and Malvenuto, 2004 (More general result)
- Wang and Zhang, 2007 (Clever use of clique-coclique bound)
- Godsil and Meagher, 2009 (Algebraic method, like Wilson's)

A group has the *EKR-property* if the **size** of the largest set of intersecting permutations is the size of the largest stabilizer of a point.

A group has the *strict-EKR* property if the **only maximum** intersecting permutations are the stabilizer of a point or a coset of one.

st These properties depend on the action of the group.st

Example

Sym(n) with its natural action on $\{1, \ldots, n\}$ has the strict-EKR property.

A non-EKR group

Example

The group Sym(8) acting on the ordered 4-sets from $\{1, \ldots, 8\}$ does not have the EKR property. The set of all permutations that fix at least 5 of [1..6] is intersecting and bigger.

- Subgroup that fixes the elements {1,2,3,4} has size 4! = 24.
- The set that fixes at least 5 of {1,2,3,4,5,6}

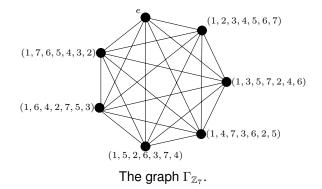
For any $G \leq Sym(n)$ we can define a *Derangement Graph*.

- Γ_G denotes the derangement graph for a group G.
- The vertices are the elements of *G*.
- Vertices $\sigma, \pi \in G$ are adjacent if and only if $\pi^{-1}\sigma$ is a derangement. (So adjacent if **not** intersecting.)

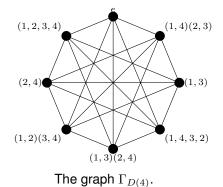
The derangement graph depends on the action!

An intersecting set in *G* is a coclique in Γ_G .

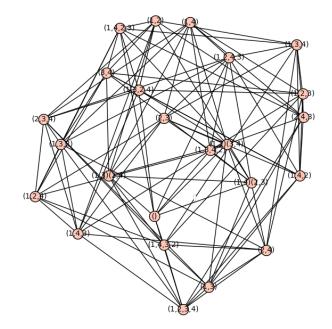
Derangement Graph of \mathbb{Z}_7



Derangement Graph of Dihedral Group



Derangement Graph for Sym(4)



- Γ_G is vertex transitive.
- An intersecting set in *G* is a coclique in Γ_G .
- If G has a sharply 1-transitive set, then Γ_G has a clique of size n.
- Clique-coclique bound for a vertex transitive graph X

$$\alpha(X) \le \frac{|V(X)|}{\omega(X)}.$$

If $G \leq \text{Sym}(n)$ has a sharply 1-transitive subgroup, then $|S_{i,j}| = \frac{|G|}{n}$ and the canonical intersecting sets are maximum.

Let G be a group and C a subset of G. Define the Cayley Graph Cay(G, C) to be the graph with

- the vertices elements of *G*,
- and g, h are adjacent if gh^{-1} is in the set C.
- A Cayley graph Cay(G, C) is a *normal* Cayley graph if C is closed under conjugation.
- If der(G) is the set of derangements in G, then

 $\Gamma_G = Cay(G, der(G)).$

so Γ_G is a **normal** Cayley graph with connection set Der(G) the set of derangements of *G*.

- **③** Γ_G is connected if and only if the derangements generate the group.
- **(9)** Γ_G is a union of graphs in that conjugacy class association scheme.

Eigenvalues of Cayley Graphs

Theorem

If Cay(G, C) is a normal Cayley graph, then the eigenvalues of Cay(G, C) are

$$\frac{1}{\chi(1)} \sum_{\sigma \in C} \chi(\sigma)$$

where χ is an irreducible character of G.

Example

Let 1 be the trivial character for G, then

$$\lambda_{\mathbf{1}} = \frac{1}{\mathbf{1}(1)} \sum_{g \in \operatorname{der}(G)} \mathbf{1}(g) = |\operatorname{der}(G)| = d.$$

This is the degree of the derangement graph.

Example

If $G \leq \operatorname{Sym}(n)$ is a Frobenius group, then the spectrum of Γ_G is

$$\{n-1^{(k)}, -1^{k(n-1)}\}.$$

The derangement graph of any Frobenius group is the union of k complete graphs on n vertices.

- Any Frobenius group has the EKR property.
- If k > 2 then it does not have the strict EKR property. There are n^k maximum cocliques, and n² canonical cocliques.

Example

Let G = PGL(2, q), the characters can be calculated:

Character	λ_1	λ_{-1}	ψ_1	ψ_{-1}	η_{eta}	ν_{γ}
Eigenvalue	$\frac{q^2(q-1)}{2}$	$\frac{-q(q-1)}{2}$	$\frac{-q(q-1)}{2}$	$\frac{q-1}{2}$	q	0

- PGL(2, q) has the EKR property. Use the ratio bound.
- PGL(2, q) has the strict-EKR property.
 First, no coclique is in the ψ₁-eigenspace.
 Second, any coclique in the λ₁-eigenspace is a canonical coclique.

2-Transitive Subgroups

- The permutation character is fix(g).
- Solution Define $\chi(g) = \operatorname{fix}(g) 1$ (So χ = permutation trivial).
- **③** *G* is 2-transitive if and only if χ is irreducible.

$$\begin{split} \langle \chi, \chi \rangle &= \frac{1}{|G|} \sum_{g \in G} (|\operatorname{fix}(g)| - 1)^2 \\ &= \frac{1}{|G|} \sum_{g \in G} |\operatorname{fix}(g)|^2 - 2\frac{1}{|G|} \sum_{g \in G} |\operatorname{fix}(g)| + \frac{1}{|G|} \sum_{g \in G} 1 = 1 \end{split}$$

• The eigenvalue for χ is

$$\lambda_{\chi} = \frac{1}{\chi(1)} \sum_{g \in Der(G)} \chi(g) = \frac{-|Der(G)|}{n-1}$$

Solution Define $E_{\chi}[g,h] = \chi(h^{-1}g)$; the *permutation module* is the span of the columns of E_{χ} and E_1 (the all ones vector).

Theorem

Let *G* be a 2-transitive group acting on an *n*-set. If $\frac{-|Der(G)|}{n-1}$ is the least eigenvalue for Γ_G , then the largest intersecting set has size $\frac{|G|}{n}$

Proof. By the ratio bound

$$\alpha(\Gamma_G) \leq \frac{|G|}{1 - \frac{|Der(G)|}{-\frac{|Der(G)|}{n-1}}} = \frac{|G|}{n}.$$

Since G is transitive, then the stabilizer of a point has size |G|/n.

Theorem

Further, if only χ has eigenvalue $\frac{-|Der(G)|}{n-1}$, then the characteristic vector of any maximum coclique *S* is in the permutation module.

Assume that G is a group with a 2-transitive action on a set of size n.

- Prove the bound $\alpha(\Gamma_G) \leq \frac{|G|}{n}$ holds.
 - ► If *G* has a sharply transitive group, use clique-coclique bound.
 - Use ratio bound with $A(\Gamma_G)$,
 - Use ratio bound with a weighted adjacency matrix.
- Show the characteristic vector for any maximum coclique is a linear combination of the vectors $v_{i,j}$.
 - The vectors $v_{i,j}$ span the ψ -module.
 - Show the characteristic vector for any maximum coclique is in this ψ -module.

Since $v_{i,j}$ Find all 01-vectors that are linear combinations $v_{i,j}$ with exactly $\frac{|G|}{n}$ ones.

- Reduces to showing matrix has full rank.
- or finding the kernel of this matrix.

A group *G* has the *EKR property* if the size of the maximum intersecting permutations is the size of the largest stabilizer of a point.

A group G has the *EKR-module property* if the characteristic vector of any maximum intersecting set is in the ψ -module.

A group *G* is *strict-EKR* if the only maximum intersecting permutations are the stabilizer of a point, or a coset of one.

Theorem (M, Spiga, Tiep)

All two transitive groups have the EKR property.

First we used the two reductions:

- if a group has a sharply 1-transitive subgroup then it has the EKR property.
- (2) if G has a transitive subgroup H with the EKR property, then G has the EKR property.

A 2-transitive group *G* has a unique minimal normal subgroup ; either this subgroup is regular, or *G* is of almost simple type.

Table of 2-transtive groups of almost simple type

Line	Group S	Degree	Condition on G	Remarks
1	$\operatorname{Alt}(n)$	n	$\operatorname{Alt}(n) \le G \le \operatorname{Sym}(n)$	$n \ge 5$
2	$\mathrm{PSL}_n(q)$	$\frac{q^n-1}{q-1}$	$\operatorname{PSL}_n(q) \le G \le \operatorname{P}\Gamma\operatorname{L}_n(q)$	$n \ge 2, (n,q) \ne (2,2), (2,3)$
3	$\operatorname{Sp}_{2n}(2)$	$2^{n-1}(2^n-1)$	G = S	$n \ge 3$
4	$\operatorname{Sp}_{2n}(2)$	$2^{n-1}(2^n+1)$	G = S	$n \ge 3$
5	$PSU_3(q)$	$q^3 + 1$	$PSU_3(q) \le G \le P\Gamma U_3(q)$	$q \neq 2$
6	$\operatorname{Sz}(q)$	$q^2 + 1$	$Sz(q) \le G \le Aut(Sz(q))$	$q = 2^{2m+1}, m > 0$
7	$\operatorname{Ree}(q)$	$q^3 + 1$	$\operatorname{Ree}(q) \le G \le \operatorname{Aut}(\operatorname{Ree}(q))$	$q = 3^{2m+1}$, $m > 0$
8	M_n	n	$M_n \le G \le \operatorname{Aut}(M_n)$	$n \in \{11, 12, 22, 23, 24\},\$
				M_n Mathieu group,
				G=S or n=22
9	M_{11}	12	G = S	
10	$PSL_{2}(11)$	11	G = S	
11	Alt(7)	15	G = S	
12	$PSL_2(8)$	28	$G = P\Sigma L_2(8)$	
13	HS	176	G = S	HS Higman-Sims group
14	Co_3	276	G = S	Co ₃ third Conway group

Strict-EKR for 2-transitive groups

- Sym(n) has strict EKR-property. (Cameron and Ku, Godsil and M.)
- **2** For PGL(n,q)
 - for n = 2 has the strict-EKR property (M. and Spiga);
 - ▶ for n ≥ 3 the maximum intersecting sets are either stabilizers of a point or a hyperplane (M. and Spiga, Spiga).
- SEL(2,q) has the strict-EKR property (Long, Plaza, Sin, Xiang).
- Solution Alt(n) and the Mathieu groups have the strict EKR (Ahmadi, M.).
- **(**) M_{11} on 12 points has strict EKR
- **(**) $PSL_2(11)$ on 11 and Alt(7) on 15 do not have strict EKR.

Fact

Not all two transitive groups have the strict-EKR property.

Every 2-transitive group has the EKR-module Property

A group has the **EKR-module property** if the characteristic vector of any maximum intersecting set in in the permutation module.

Theorem (M., Sin)

All 2-transitive groups have the EKR module property.

Corollary

For any 2-transitive group, the characteristic vector of any maximum intersecting set is a linear combination of the $v_{i,j}$.

Let G be a 2-transitive group and S a maximum intersecting set.

- S has the same inner distribution as the stabilizer of a point. (The inner distribution is the number of pairs of elements $g, h \in S$ with in gh^{-1} in a conjugacy class.)
- \bigcirc If S is a group, then

$$\operatorname{ind}(\mathbf{1}_S)^G = \operatorname{ind}(\mathbf{1}_{G_x})^G$$

When does a group have non-conjugate subgroups that give the same induced representation?

For a 2-transitive group, are the maximum intersecting sets always subgroups or cosets of subgroups?

Intersection density

For a permutation group G (maybe make it transitive?) define the ratio of the size of a largest intersecting set to the size of a canonical intersecting set.

 $I(G) = \alpha(\Gamma_G) / |G_x|.$

- This ratio is 1 if and only if G has the EKR property.
- 2 If G is 2-transitive, then I(G) = 1.
- If G acts on a set with prime order then I(G) = 1.
 (G has an element with order p, so a clique of size p.)

How big can this ratio be?

Recently Li, Song and Pantangi conjectured if $G \leq Sym(n)$ is transitive then

 $\alpha(\Gamma_G)/|G_x| \le \sqrt{n}.$

They gave an example of a family of groups where this holds asymptotically.

Other Interesting Examples

Example (Razafimahatratra)

There is a group $G \leq \text{Sym}(18)$ with |G| = 324 and $\Gamma_G = K_{108,108,108}$.

- Maximum cocliques are 6 times larger than the stabilizer of a point.
- ② This group has $\alpha(\Gamma_G)/|G_x| = 6$ (largest that we have found!).

There other are groups with

$$\Gamma_G = K_{\ell,\ell,\dots,\ell}$$

- the cocliques are much bigger than the stabilizer of a point.
- G is imprimitive
- These groups have the EKR-module property!

But, we only found 4 groups that have their derangement graph a complete tripartite graph. (Only 3 are counter examples to the conjecture.)

Theorem (M., Razafimahatratra and Spiga)

A derangement graph for a transitive group $G \leq Sym(n)$ with n > 2 is not bipartite.

Proof.

- If Γ_G is bipartite, then its parts are *H* and *xH* where *H* is a normal subgroup *G*.
- It has a normal covering number of 2, these have been mostly characterized.

Theorem (M., Razafimahatratra and Spiga)

A derangement graph for a transitive group must have a clique of size 3.

Is it true that for any 2-transitive group that any maximum intersecting set of permutations is either a group or a coset of group?

For 2-transitive groups, what are the boolean vectors in the χ -module? These can be considered to be the "Cameron-Leibler" sets for permutations.

Which 1-transitive groups have "interesting" intersecting set of permutations?

In a transitive group what is the largest set of permutations that is closed under taking conjugation?