Matroids vs. Δ
Matroids in Δ -
Realization Problem Quotients of

Maps, Δ-matroids and Rigidity Matroids for Graphs on Surfaces

Remi Cocou Avohou, Brigitte Servatius, WPI

Combinatorial.

Worcester Treegloo 2022

1. Matroids vs. Δ-matroids

M is a Matroid

E a finite set - the ground set of M
$\mathcal{B} \subseteq \mathcal{P}(E)$ - the bases of M

Page 2 of 54

Go Back

Full Screen

Close

M is a Matroid

E a finite set - the ground set of M $\mathcal{B} \subseteq \mathcal{P}(E)$ - the bases of M

The basis exchange axiom:

$$
B_{1}, B_{2} \in \mathcal{B}, x \in B_{1} \backslash B_{2} \Longrightarrow \exists y \in B_{2} \backslash B_{1}
$$

$$
\left(B_{1} \cup\{y\}\right) \backslash\{x\}=B_{1} \triangle\{x, y\} \in \mathcal{B}
$$

M is a Matroid

E a finite set - the ground set of M $\mathcal{B} \subseteq \mathcal{P}(E)$ - the bases of M

The alternate basis exchange axiom:
$B_{1}, B_{2} \in \mathcal{B}, x \in B_{2} \backslash B_{1} \Longrightarrow \exists y \in B_{1} \backslash B_{2}$

$$
\left(B_{1} \cup\{x\}\right) \backslash\{y\}=B_{1} \triangle\{x, y\} \in \mathcal{B}
$$

M is a Matroid

E a finite set - the ground set of M $\mathcal{B} \subseteq \mathcal{P}(E)$ - the bases of M

Quotients of

Combinatorial

Rigidity matroid

Bibliography

Home Page

Title Page

Page 5 of 54

The basis exchange axiom:

$$
B_{1}, B_{2} \in \mathcal{B}, x \in B_{1} \backslash B_{2} \Longrightarrow \exists y \in B_{2} \backslash B_{1}
$$

$$
\left(B_{1} \cup\{y\}\right) \backslash\{x\}=B_{1} \triangle\{x, y\} \in \mathcal{B}
$$

M is a Matroid

E a finite set - the ground set of M
$\mathcal{B} \subseteq \mathcal{P}(E)$ - the bases of M

Bases

$$
-B \in \mathcal{B}
$$

Independent sets $\mathcal{I}-I \subseteq B \in \mathcal{B}$.
Dependent sets $\mathcal{D}-D \notin \mathcal{I}$
Cycles (circuits) $\mathcal{C}-C \in \mathcal{D}, C \not \subset D \in \mathcal{D}$
Spanning sets $\mathcal{S}-S \supset B \in \mathcal{B}$.

The basis exchange axiom:
$B_{1}, B_{2} \in \mathcal{B}, x \in B_{1} \backslash B_{2} \Longrightarrow \exists y \in B_{2} \backslash B_{1}$

$$
\left(B_{1} \cup\{y\}\right) \backslash\{x\}=B_{1} \triangle\{x, y\} \in \mathcal{B}
$$

M is a Matroid

E a finite set - the ground set of M $\mathcal{B} \subseteq \mathcal{P}(E)$ - the bases of M

The basis exchange axiom:
$B_{1}, B_{2} \in \mathcal{B}, x \in B_{1} \backslash B_{2} \Longrightarrow \exists y \in B_{2} \backslash B_{1}$

$$
\left(B_{1} \cup\{y\}\right) \backslash\{x\}=B_{1} \triangle\{x, y\} \in \mathcal{B}
$$

D is a Δ-matroid

The symmetric exchange axiom:

$$
F_{1}, F_{2} \in \mathcal{F}, x \in F_{1} \triangle F_{2} \Longrightarrow \exists y \in F_{1} \triangle F_{2}
$$

$$
F_{1} \triangle\{x, y\} \in \mathcal{F}
$$

D is a Δ-matroid

The symmetric exchange axiom:

$$
F_{1}, F_{2} \in \mathcal{F}, x \in F_{1} \triangle F_{2} \Longrightarrow \exists y \in F_{1} \triangle F_{2}
$$

$$
F_{1} \triangle\{x, y\} \in \mathcal{F}
$$

```
Bibliography
```

Home Page

Title Page

Page 9 of 54

1865

Bouchet
Bouchet
Dress \& Havel
Chandrasekaran 1988

1987
1998
1986

2. Matroids in Δ-matroids

Given a Δ-matroid D, we find two matroids in D :
M_{u}, the upper matroid, whose bases are the feasible sets with largest cardinality
M_{l}, the lower matroid, whose bases are the feasible sets with least cardinality

Matroids vs. Δ -

Matroids in Δ.

Realization Problem Quotients of Combinatorial. Rigidity matroid. Bibliography

Theorem 1 Let $M=(E, \mathcal{B})$ be a matroid with independent sets \mathcal{I}. Then $D=(E, \mathcal{I})$ is a Δ-matroid.
The upper matroid is (E, \mathcal{B}) and the lower matroid (E, \emptyset).
Theorem 2 Let $M=(E, \mathcal{B})$ be a matroid with spanning sets \mathcal{S}. Then $D=(E, \mathcal{S})$ is a Δ-matroid.

The upper matroid is $(E, \mathcal{P}(E))$ and the lower matroid (E, \mathcal{B}).
Theorem 3 If $D=(E, \mathcal{F})$ is a Δ-matroid, $F \in \mathcal{F}$, then F is spanning in M_{l} and F is independent in M_{u}.

3. Realization Problem

Given $M_{l}=\left(E, \mathcal{B}_{l}\right)$ and $M_{u}=\left(E, \mathcal{B}_{u}\right)$, construct $D=(E, \mathcal{F})$ realizing them.

$$
\{\{a, b\},\{a\},\{b\}, \emptyset\} \quad\{\{a, b\}, \emptyset\}
$$

Upper and Lower matroids do not determine the Δ-matroid:

Matroids vs. Δ -

Matroids in Δ -

Realization Problem
Quotients of Combinatorial Rigidity matroid Bibliography

Home Page

Title Page

An example with as many intermediate feasible sets as possible:

Theorem $4 G=(V, E)$ a connected simple graph. M_{c} the connectivity matroid (cycle matroid) M_{r} the 2-dimensional generic rigidity matroid $\mathcal{F}: F$ connected (spanning in M_{c}) not-overbraced (independent in M_{r})
Then \mathcal{F} satisfies the symmetric exchange property.
Tool: A minimally overbraced graph is 2-connected.

Title Page

For this construction it is not necessary that a cycle in M_{u} be connected in M_{l} :

Example

$E=\{1,2,3, a, b, c\}$,
$M_{u}=U_{5,6}(E), M_{l}=U_{2,3}(\{1,2,3\}) \oplus U_{2,3}(\{a, b, c\})$.
$D=\left(E, \mathcal{B}_{u} \cup \mathcal{B}_{l}\right)$ is a Δ-matroid.
M_{u} is a cycle.
M_{l} is disconnected.

A weaker condition: Every cycle in M_{u} is a union of cycles in M_{l}.

The weaker condition is necessary:

Two connectivity matroids on the same edge set. M_{u} and M_{l} are matroids.

- Every basis of M_{l} is independent in M_{u}
- Every basis of M_{u} is spanning in M_{l}

But
Every cycle of M_{u} is not a union of cycles of M_{l}. matroid.

Matroids vs. Δ -

 Matroids in Δ -The weaker condition is necessary:
Theorem 5 Let $D=(E, \mathcal{F})$, with upper matroid M_{u} and lower matroid M_{l}. Then every cycle in M_{u} is a union of cycles in M_{l}.

Theorem 6 Given $M_{u}=\left(E, \mathcal{B}_{u}\right), M_{l}=\left(E, \mathcal{B}_{u}\right)$, with Every cycle in M_{u} is a union of cycles in M_{l}. Then every $B \in B_{u}$ is spanning M_{l}. Then every $B \in B_{l}$ is independent in M_{l}.

Matroids vs. Δ -

 Matroids in Δ Realization Problem
Quotients of.

Title Page

44

Necessary and Sufficient for Realization

Theorem 7 Given $M_{u}=\left(E, \mathcal{B}_{u}\right), M_{l}=\left(E, \mathcal{B}_{u}\right)$.
M_{u} and M_{l} realize the Δ-matroid $D=(E, \mathcal{F})$ if and only if
Every cycle in M_{u} is a union of cycles in M_{l}.

4. Quotients of Matroids

(Oxley [11]) $Q=\left(E, \mathcal{B}_{Q}\right)$ is a quotient of $M=\left(E, \mathcal{B}_{M}\right)$ if there is a matroid $N=\left(E \cup X, \mathcal{B}_{N}\right), E \cap X=\emptyset$, with $M=N \backslash X$ and $Q=N / X$.

Theorem 8 (Oxley) Q is a quotient of M if and only if every circuit of M is a union of circuits of Q.

Corollary 2 Given $M_{u}=\left(E, \mathcal{B}_{u}\right), M_{l}=\left(E, \mathcal{B}_{u}\right)$.
M_{u} and M_{l} realize the Δ-matroid $D=(E, \mathcal{F})$ if and only if
M_{l} is a quotient of M_{u}.

Corollary 3 [1] The connectivity matroid of a graph is a quotient of the rigidity matroid.

A graph G and its cone G_{c}.
Theorem $9 M_{r}(G)=M_{r}\left(G_{c}\right) \backslash X$ $M_{c}(G)=M_{r}\left(G_{c}\right) / X$.

5. Combinatorial Maps and Δ matroids

Tutte, in the introduction to his paper What is a map? [17] remarks

Maps are usually presented as cellular dissections of topologically defined surfaces. But some combinatorialists, holding that maps are combinatorial in nature, have suggested purely combinatorial axioms for map theory, so that that branch of combinatorics can be developed without appealing to point-set topology.

Tutte's idea is that each edge of a map is associated with four flags, corresponding to the triangles in the barycentric subdivision.
The map can be uniquely described in terms of three perfect matchings. Two flags are matched if they differ in exactly one vertex.
Faces, Euler characteristic, and orientability can be treated combinatorially without appealing to topology.

Tutte's idea is that each edge of a map is associated with four flags, corresponding to the triangles in the barycentric subdivision.
The map can be uniquely described in terms of three perfect matchings. Two flags are matched if they differ in exactly one vertex.
Faces, Euler characteristic, and orientability can be treated combinatorially without appealing to topology.

Matroids vs. Δ.

Matroids in Δ -

Realization Problem Quotients of. Combinatorial. Rigidity matroid Bibliography

Home Page

Title Page
\square
Page 24 of 54

Tutte's idea is that each edge of a map is associated with four flags, corresponding to the triangles in the barycentric subdivision.
The map can be uniquely described in terms of three perfect matchings. Two flags are matched if they differ in exactly one vertex.
Faces, Euler characteristic, and orientability can be treated combinatorially without appealing to topology.

Tutte's idea is that each edge of a map is associated with four flags, corresponding to the triangles in the barycentric subdivision.
The map can be uniquely described in terms of three perfect matchings. Two flags are matched if they differ in exactly one vertex.
Faces, Euler characteristic, and orientability can be treated combinatorially without appealing to topology.

Let Γ be a graph whose edges are partitioned into three classes R, G, and B which we color respectively red, green, and black. Γ is called map graph or a combinatorial map if the following conditions are satisfied:

1. Each color class is a perfect matching
2. $R \cup G$ is a union of 4-cycles
3. Γ is connected

The graph Γ is 3 -regular and edge 2 -connected. Γ may have parallel edges, although necessarily not red/green. Γ contains 2-regular subgraphs which use all the black edges of Γ, which we call fully black 2-regular subgraphs; $R \cup B$ and $G \cup B$ are examples, and there always exists a fully black Hamiltonian cycle.

Proof of Hamiltonicity:
First note that a fully black 2-regular subgraph cannot contain any incident green and red edges, so every red/green quadrilateral intersects a fully black 2-regular subgraph in either two red, or two green edges.
Now consider a fully black 2-regular subgraph of Γ with the fewest connected components.
If there is not a single component, then there is a green/red quadrilateral which intersects the subgraph in, say, two red edges which belong to two different components, and swapping red and green on that quadrilateral reduces the number of components of the subgraph, violating minimality.

Title Page

Theorem 10 [2] Given a combinatorial map $\Gamma(R, G, B)$, let E be the set of quadrilaterals of $R \cup G$, and let \mathcal{F} be the collection of subsets of E corresponding to the pairs of green edges in a fully black Hamilton cycle in Γ. Then (\mathcal{F}, E) is a Δ-matroid.

We have to show the symmetric exchange property. Let F_{C} and $F_{C^{\prime}}$ be sets of quadrilaterals corresponding to fully black Hamiltonian cycles C and C^{\prime}. Let $q \in F_{C} \triangle F_{C}^{\prime}$, so the edges of quadrilateral q are differently colored in C and C^{\prime}, say red and green. There are two cases, either replacing in q the red edges in C with the green of C^{\prime} results in two components or one. See Figure .

If it results in just one component, then take $q^{\prime}=q$, and $F_{c} \triangle\left\{q, q^{\prime}\right\}=F_{c} \triangle\{q\}$ is the set of red quadrilaterals of a fully black Hamiltonian cycle, and hence feasible, as required.

Otherwise, if there are two components, the Hamiltonian cycle of C^{\prime} contains a non-black edge, say green, of a quadrilateral q_{1}, connecting those two components, and necessarily both red edges of q_{1} are in C and both green edges of q_{1} connect the components, and $q^{\prime} \in C \triangle C^{\prime}$.

Regardless of how the green edges of q_{1} are placed, swapping the edges of both q and q^{\prime} in C yields a new fully black Hamiltonian cycle, so the set $Q \triangle\left\{q, q_{1}\right\}$ is feasible, as required. them induces a set of disjoint cycles. Let V be the set of cycles of $R \cup B, E$ be the set of cycles of $R \cup G$, and V^{*} be the set of cycles of $G \cup B$. There is a graph (V, E) where incidence is defined between a red-black cycle and a red-green cycle if they share an edge, and, similarly, there is a graph $\left(V^{*}, E\right)$ where incidence is defined between a green-black cycle and a red-green cycle if they share an edge. We say that Γ encodes the graph (V, E) and its geometric dual $\left(V^{*}, E\right)$.

Title Page

Theorem 11 Let $\Gamma(R, G, B)$ be a combinatorial map and let $D_{\Gamma}=(\mathfrak{F}, E)$ be its associated Δ-matroid. Then
the lower matroid of D_{Γ} is the cycle matroid of (V, E) and the upper matroid of D_{Γ} is the cocycle matroid of $\left(V^{*}, E\right)$.

Proof: Given $\Gamma(R, G, B)$, recall that the feasible sets of D consist of $R G$ quadrilaterals whose R edges are contained in a fully black Hamilton cycle of Γ.
Any fully black Hamilton cycle C of Γ must contain the red edges corresponding to a spanning tree of (V, E) as well as the green edges corresponding to a spanning tree of $\left(V^{*}, E\right)$. So the minimal number of red edges in C is $2(|V|-1)$, while the maximal number is $2\left(|E|-\left|V^{*}\right|+1\right)$.
The edge sets of the spanning trees of (V, E) are the bases of its cycle matroid, while the complements of edge sets of spanning trees in $\left(V^{*}, E\right)$ are the bases of the cocycle matroid of $\left(V^{*}, E\right)$.

Matroids vs. Δ -
Matroids in Δ -

- The difference in rank of the upper and lower matroid of (\mathfrak{F}, E) is given by

$$
\left(|E|-\left|V^{*}\right|+1\right)-(|V|-1)=2-\chi,
$$

$-\chi$ is the Euler characteristic.
-If Γ is bipartite, all feasible sets of $D_{\Gamma}=(\mathfrak{F}, E)$ must have the same parity -
since exchanging a red and green pair of edges always disconnects a Hamilton cycle of a bipartite Γ.

Matroids vs. Δ -

$$
\mathfrak{F}=\{\{1,3,4\},\{1,3,5\},\{1,3,6\},\{1,4,5\},\{1,4,6\}
$$

$$
\{2,3,4\},\{2,3,5\},\{2,3,6\},\{2,4,5\},\{2,4,6\},\{3,4,5\},\{3,4,6\}\}
$$

- \mathfrak{F} is the set of spanning trees of G and at the same time the set of co-trees of G^{*} so
- all feasible sets have the same size and
- the upper and lower matroid are identical.

Home Page

Title Page

44

$$
\{2,3,4\},\{2,3,5\},\{2,3,6\},\{2,4,5\},\{2,4,6\},\{3,4,5\},\{3,4,6\},
$$

$$
\{1,2,3,4,5\},\{1,2,3,4,6\}\}
$$

$$
\mathfrak{F}=\{\{1,3,4\},\{1,3,5\},\{1,3,6\},\{1,4,5\},\{1,4,6\}
$$

The lower matroid is again the cycle matroid of G, but the upper matroid is the co-cycle matroid of G^{*}, The upper matroid has rank 5 and contains exactly one cycle, namely $\{5,6\}$,
which is a minimal cutset of G^{*} and also a cycle in G.

Matroids vs. Δ

Matroids in Δ -

Title Page

The Δ-matroid associated to this the map has, in addition to the feasible sets of the previous example, the feasible set $\{1,2,3,4\}$, whose parity is even, while the parity of all other feasible sets is odd, so this map is not orientable.

As is clear from these examples, the map cannot, in general be recovered from the Δ-matroid information, since the upper or lower matroid do not even determine the graph. Nonisomorphic graphs may have identical cycle-and co-cycle matroids. It is easy to check that \mathfrak{F} is also a list of spanning trees for the graph G^{\prime}, but G is not isomorphic to G^{\prime}.

Full Screen

Title Page

However, if both G and G^{*} are 3-connected, then the map is uniquely recoverable from the Δ-matroid information.

Theorem 12 Let D be the Δ-matroid of a map M with 2connected upper- and lower matroid. Then M is determined by D. uniquely determine G and G^{*}. To recover M from D, we need to specify a rotation system for each vertex v of G.
To determine if two edges e and f with endpoint v follow each other in the rotation about v, it is enough to check if e and f are both incident in G^{*}, since the vertex co-cycles of G^{*} correspond to the facial cycles of the embedded G.
Now re-construct the map graph \square

Matroids vs. Δ -

Matroids in Δ -

 Realization Problem Quotients of.Combinatorial.

Rigidity matroid.

Bibliography

Home Page

Title Page

Page 41 of 54

Go Back

Full Screen

A^{a}	D^{b}	B^{c}	E^{d}	C^{e}
B^{c}	E^{d}	C^{e}	A^{a}	D^{b}
C^{e}	A^{a}	D^{b}	B^{c}	E^{d}
D^{b}	B^{c}	E^{d}	C^{e}	A^{a}
d	C^{e}	A^{a}	D^{b}	B^{c}

Matroids vs. Δ -
Matroids in Δ -

For example the lower matroid could be the cycle matroid of K_{5}, while the upper matroid is the co-cycle matroid of K_{5} as well, so this matroid information gives us the graphs G and G^{*} depicted in Figures. By the method in the proof of Theorem 12 the map M is easily recovered.

Matroids vs. Δ -

Matroids in Δ -

6. Rigidity matroid for graphs on surfaces

Represent the surface by a polygon P with boundary identifications
Given $G(V, E)$, embed V and represent E by straight line segments on P.
Straight line segments might cross.

Matroids vs. Δ -

Matroids in Δ -
Realization Problem
Quotients of
Combinatorial. Rigidity matroid Bibliography

Home Page

Title Page

Page 44 of 54

Miracle in the Plane

Planar rigidity cycles dualize into rigidity cycles.

Matroids vs. Δ
Matroids in Δ-.
Realization Problem
Quotients of.
Combinatorial.

Home Page

Title Page

4

Page 45 of 54

Go Back

Full Screen

Matroids vs. Δ -

Matroids in Δ -

Page 46 of 54

Go Back

Rigidity matroid for graphs whose vertices are embedded in the plane

The rigidity matroid is the Dilworth truncation of two cycle matroids of G. [14, 15]
Equivalently, the rigidity matroid is the Dilworth truncation of M_{l} and M_{u}.

Matroids vs. Δ
Matroids in Δ-.
Realization Problem
Quotients of.
Combinatorial.

Home Page

Title Page

4

Page 47 of 54

Go Back

Full Screen

Matroids vs. Δ -

Matroids in Δ -

Home Page

Title Page

Page 48 of 54

What is the probability that two points in the unit square torus have shortest distance intersecting the boundary square.

So the 4D volume of the collection of points

$$
\left(x_{0}, y_{0}, x_{1}, y_{1}\right) \subseteq[0,1]^{4}
$$

with this property is

$$
\begin{aligned}
V & =4 \int_{0}^{1 / 2} \int_{0}^{1 / 2}((2 x+1) / 2)((2 y+1) / 2) d x d y \\
& =\left[\int_{0}^{1 / 2} 2 x+1 d x\right]\left[\int_{0}^{1 / 2} 2 y+1 d y\right] \\
& =[1 / 4+1 / 2]^{2}=9 / 16
\end{aligned}
$$ bedded on a compact surface

Represent the surface by a polygon P with boundary identifications
Given $G(V, E)$, embed V and represent E by straight line segments on P.
Straight line segments might cross.
A.a.s. this yields a map M. The rigidity matroid for G on P is (a truncation) of the union of M_{u} and M_{l}.

Handle slides

[10]
Let $D=(E, \mathcal{F})$ be a set system, and $a, b \in E$ with $a \neq b$. We define $D_{a b}$ to be the set $\operatorname{system}\left(E, \mathcal{F}_{a b}\right)$ where

$$
\mathcal{F}_{a b}=\mathcal{F} \Delta\{X \cup a \mid X \cup b \in \mathcal{F} \text { and } X \subseteq E-\{a, b\}\}
$$

We call the move taking D to $D_{a b}$ a handle slide taking a over b.

For each binary Δ-matroid D, there is a sequence of handle slides taking D to some $D_{i, j, k, l}$ where i is the size of the ground set minus the size of a largest feasible set, l is the size of a smallest feasible set, $2 j+k$ is difference in the sizes of a largest and a smallest feasible set. Moreover, $k=0$ if and only if D is even, and if D is odd then every value of j from 0 to $\left\lfloor\frac{w}{2}\right\rfloor$, where w is the difference between the sizes of a largest and a smallest feasible set, can be attained.

References

[1] Rémi Cocou Avohou, Brigitte Servatius, and Hermann Servatius. Delta matroids from matroids. Congressus Numerantium, 233:103-110, 2019.
[2] Rémi Cocou Avohou, Brigitte Servatius, and Hermann Servatius. Maps and Δ-matroids revisited. Art Discrete Appl. Math., 4(1):paper No. 1.03, 8, 2021.
[3] André Bouchet. Greedy algorithm and symmetric matroids. Math. Programming, 38(2):147159, 1987.
[4] André Bouchet. Multimatroids. I. Coverings by independent sets. SIAM J. Discrete Math., 10(4):626-646, 1997.
[5] André Bouchet. Multimatroids. II. Orthogonality, minors and connectivity. Electron. J. Combin., 5:Research Paper 8, 25, 1998.
[6] André Bouchet. Multimatroids. IV. Chain-group representations. Linear Algebra Appl., 277(1-3):271-289, 1998.
[7] André Bouchet. Multimatroids. III. Tightness and fundamental graphs. European J. Combin., 22(5):657-677, 2001. Combinatorial geometries (Luminy, 1999).
[8] R. Chandrasekaran and Santosh N. Kabadi. Pseudomatroids. Discrete Math., 71(3):205-217, 1988.
[9] Andreas Dress and Timothy F. Havel. Some combinatorial properties of discriminants in metric vector spaces. Adv. in Math., 62(3):285-312, 1986.
[10] Iain Moffatt and Eunice Mphako-Banda. Handle slides for delta-matroids. European J. Combin., 59:23-33, 2017.
[11] James Oxley. Matroid theory, volume 21 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, second edition, 2011.

Matroids vs. Δ -

Matroids in Δ -

Realization Problem

Quotients of Combinatorial Rigidity matroid Bibliography

Home Page

Title Page

44
[12] Leonidas S. Pitsoulis. Topics in matroid theory. SpringerBriefs in Optimization. Springer, New York, 2014.
[13] András Recski. Matroid theory and its applications in electric network theory and in statics, volume 6 of Algorithms and Combinatorics. Springer-Verlag, Berlin; Akadémiai Kiadó (Publishing House of the Hungarian Academy of Sciences), Budapest, 1989.
[14] Brigitte Servatius, Offer Shai, and Walter Whiteley. Combinatorial characterization of the Assur graphs from engineering. European J. Combin., 31(4):1091-1104, 2010.
[15] Brigitte Servatius, Offer Shai, and Walter Whiteley. Geometric properties of Assur graphs. European J. Combin., 31(4):1105-1120, 2010.
[16] W. T. Tutte. Introduction to the theory of matroids. Modern Analytic and Computational Methods in Science and Mathematics, No. 37. American Elsevier Publishing Co., Inc., New York, 1971.
[17] William T. Tutte. What is a map? In New directions in the theory of graphs (Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich., 1971), pages 309-325. Academic Press, New York, 1973.
[18] D. J. A. Welsh. Matroid theory. Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. L. M. S. Monographs, No. 8.
[19] Hassler Whitney. Congruent Graphs and the Connectivity of Graphs. Amer. J. Math., 54(1):150-168, 1932.
[20] Hassler Whitney. On the Abstract Properties of Linear Dependence. Amer. J. Math., 57(3):509533, 1935.

