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1. Matroids vs. ∆-matroids

M is a Matroid

E a finite set – the ground set of M
B ⊆ P(E) – the bases of M
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M is a Matroid

E a finite set – the ground set of M
B ⊆ P(E) – the bases of M

The basis exchange axiom:

B1, B2 ∈ B, x ∈ B1 \B2 =⇒ ∃y ∈ B2 \B1

(B1 ∪ {y}) \ {x} = B14 {x, y} ∈ B
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M is a Matroid

E a finite set – the ground set of M
B ⊆ P(E) – the bases of M

The alternate basis exchange axiom:
B1, B2 ∈ B, x ∈ B2 \B1 =⇒ ∃y ∈ B1 \B2

(B1 ∪ {x}) \ {y} = B14 {x, y} ∈ B
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M is a Matroid

E a finite set – the ground set of M
B ⊆ P(E) – the bases of M

The basis exchange axiom:

B1, B2 ∈ B, x ∈ B1 \B2 =⇒ ∃y ∈ B2 \B1

(B1 ∪ {y}) \ {x} = B14 {x, y} ∈ B

x
y y
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M is a Matroid

E a finite set – the ground set of M
B ⊆ P(E) – the bases of M

The basis exchange axiom:

B1, B2 ∈ B, x ∈ B1 \B2 =⇒ ∃y ∈ B2 \B1

(B1 ∪ {y}) \ {x} = B14 {x, y} ∈ B

Bases – B ∈ B.
Independent sets I – I ⊆ B ∈ B.
Dependent sets D – D 6∈ I
Cycles (circuits) C – C ∈ D, C 6⊂ D ∈ D
Spanning sets S – S ⊃ B ∈ B.
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M is a Matroid

E a finite set – the ground set of M
B ⊆ P(E) – the bases of M

The basis exchange axiom:

B1, B2 ∈ B, x ∈ B1 \B2 =⇒ ∃y ∈ B2 \B1

(B1 ∪ {y}) \ {x} = B14 {x, y} ∈ B

Whitney 1935 [20]
W. T. Tutte 1971 [16] (standard text)
D. J. A. Welsh 1976 [18] (graph theory)
James Oxley 2011 [11] (geometric/algebraic)
András Recski 1989 [13] (applied approach)
Leonidas Pitsoulis 2014 [12]
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D is a ∆-matroid

The symmetric exchange axiom:

F1, F2 ∈ F , x ∈ F14 F2 =⇒ ∃y ∈ F14 F2

F14 {x, y} ∈ F
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D is a ∆-matroid

The symmetric exchange axiom:

F1, F2 ∈ F , x ∈ F14 F2 =⇒ ∃y ∈ F14 F2

F14 {x, y} ∈ F
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D is a ∆-matroid

The symmetric exchange axiom:

F1, F2 ∈ F , x ∈ F14 F2 =⇒ ∃y ∈ F14 F2

F14 {x, y} ∈ F

Bouchet 1987 [3] (∆-matroids)
Bouchet 1998 [4, 5, 7, 6] (multimatroids)
Dress & Havel 1986 [9] (metroids)
Chandrasekaran 1988 [8] (pseudometroids)
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2. Matroids in ∆-matroids

Given a ∆-matroid D, we find two matroids in D:

Mu, the upper matroid, whose bases are the feasible sets with
largest cardinality

Ml, the lower matroid, whose bases are the feasible sets with
least cardinality
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Theorem 1 Let M = (E,B) be a matroid with independent
sets I. Then D = (E, I) is a ∆-matroid.

The upper matroid is (E,B) and the lower matroid (E, ∅).
Theorem 2 Let M = (E,B) be a matroid with spanning
sets S. Then D = (E,S) is a ∆-matroid.

The upper matroid is (E,P(E)) and the lower matroid (E,B).

Theorem 3 If D = (E,F) is a ∆-matroid, F ∈ F , then F
is spanning in Ml and F is independent in Mu.

Corollary 1 If Mu = (E,Bu) and Ml = (E,Bl) are ma-
troids, then for Mu and Ml to be upper and lower matroids
of a ∆-matroid D = (E,F) it is necessary that
– every basis of Mu be spanning in Ml and
– every basis of Ml be independent in Mu.
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Upper and Lower matroids do not determine the ∆-matroid:

{{a, b}, {a}, {b}, ∅} {{a, b}, ∅}

3. Realization Problem

Given Ml = (E,Bl) and Mu = (E,Bu), construct D = (E,F)
realizing them.
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An example with as many intermediate feasible sets as possible:

feasible

spanning tree non-acyclic
disconnected

Connectivity
Matroid

isostatic overbraced
non-rigid

Rigidity
Matroid

Theorem 4 G = (V,E) a connected simple graph.
Mc the connectivity matroid (cycle matroid)
Mr the 2-dimensional generic rigidity matroid
F : F connected (spanning in Mc) not-overbraced (indepen-
dent in Mr)
Then F satisfies the symmetric exchange property.

Tool: A minimally overbraced graph is 2-connected.
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For this construction it is not necessary that a cycle in Mu be
connected in Ml:

Example

E = {1, 2, 3, a, b, c},
Mu = U5,6(E), Ml = U2,3({1, 2, 3})⊕ U2,3({a, b, c}).
D = (E,Bu ∪ Bl) is a ∆-matroid.
Mu is a cycle.
Ml is disconnected.
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A weaker condition: Every cycle in Mu is a union of cycles in
Ml.

The weaker condition is necessary:

Two connectivity matroids on the same edge set.
Mu and Ml are matroids.
– Every basis of Ml is independent in Mu

– Every basis of Mu is spanning in Ml

But
Every cycle of Mu is not a union of cycles of Ml.

Mu and Ml are not the upper and lower matroids of any ∆-
matroid.
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The weaker condition is necessary:

Theorem 5 Let D = (E,F), with upper matroid Mu and
lower matroid Ml.
Then every cycle in Mu is a union of cycles in Ml.

Theorem 6 Given Mu = (E,Bu), Ml = (E,Bu), with
Every cycle in Mu is a union of cycles in Ml.
Then every B ∈ Bu is spanning Ml.
Then every B ∈ Bl is independent in Ml.
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Necessary and Sufficient for Realization

Theorem 7 Given Mu = (E,Bu), Ml = (E,Bu).

Mu and Ml realize the ∆-matroid D = (E,F)
if and only if
Every cycle in Mu is a union of cycles in Ml.
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4. Quotients of Matroids

(Oxley [11]) Q = (E,BQ) is a quotient of M = (E,BM) if
there is a matroid N = (E ∪X,BN), E ∩X = ∅, with
M = N \X and Q = N/X .

Theorem 8 (Oxley) Q is a quotient of M if and only if
every circuit of M is a union of circuits of Q.

Corollary 2 Given Mu = (E,Bu), Ml = (E,Bu).

Mu and Ml realize the ∆-matroid D = (E,F)
if and only if
Ml is a quotient of Mu.
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Corollary 3 [1] The connectivity matroid of a graph is a
quotient of the rigidity matroid.

A graph G and its cone Gc.

Theorem 9 Mr(G) = Mr(Gc) \X
Mc(G) = Mr(Gc)/X.



Matroids vs. ∆- . . .

Matroids in ∆- . . .

Realization Problem

Quotients of . . .

Combinatorial . . .

Rigidity matroid . . .

Bibliography

Home Page

Title Page

JJ II

J I

Page 21 of 54

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

5. Combinatorial Maps and ∆-
matroids

Tutte, in the introduction to his paper What is a map? [17]
remarks

Maps are usually presented as cellular dissections of
topologically defined surfaces. But some combinatorial-
ists, holding that maps are combinatorial in nature, have
suggested purely combinatorial axioms for map theory,
so that that branch of combinatorics can be developed
without appealing to point-set topology.
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qq

q1

Tutte’s idea is that each edge of a map is associated with four
flags, corresponding to the triangles in the barycentric subdivi-
sion.
The map can be uniquely described in terms of three perfect
matchings. Two flags are matched if they differ in exactly one
vertex.
Faces, Euler characteristic, and orientability can be treated
combinatorially without appealing to topology.
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qq

q1

Tutte’s idea is that each edge of a map is associated with four
flags, corresponding to the triangles in the barycentric subdivi-
sion.
The map can be uniquely described in terms of three perfect
matchings. Two flags are matched if they differ in exactly one
vertex.
Faces, Euler characteristic, and orientability can be treated
combinatorially without appealing to topology.
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Tutte’s idea is that each edge of a map is associated with four
flags, corresponding to the triangles in the barycentric subdivi-
sion.
The map can be uniquely described in terms of three perfect
matchings. Two flags are matched if they differ in exactly one
vertex.
Faces, Euler characteristic, and orientability can be treated
combinatorially without appealing to topology.
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Tutte’s idea is that each edge of a map is associated with four
flags, corresponding to the triangles in the barycentric subdivi-
sion.
The map can be uniquely described in terms of three perfect
matchings. Two flags are matched if they differ in exactly one
vertex.
Faces, Euler characteristic, and orientability can be treated
combinatorially without appealing to topology.
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Let Γ be a graph whose edges are partitioned into three classes
R, G, and B which we color respectively red, green, and black.
Γ is called map graph or a combinatorial map if the following
conditions are satisfied:

1. Each color class is a perfect matching

2. R ∪G is a union of 4-cycles

3. Γ is connected

The graph Γ is 3-regular and edge 2-connected. Γ may have
parallel edges, although necessarily not red/green. Γ contains
2-regular subgraphs which use all the black edges of Γ, which
we call fully black 2-regular subgraphs; R ∪ B and G ∪ B are
examples, and there always exists a fully black Hamiltonian
cycle.
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Proof of Hamiltonicity:
First note that a fully black 2-regular subgraph cannot contain
any incident green and red edges, so every red/green quadri-
lateral intersects a fully black 2-regular subgraph in either two
red, or two green edges.

Now consider a fully black 2-regular subgraph of Γ with the
fewest connected components.

If there is not a single component, then there is a green/red
quadrilateral which intersects the subgraph in, say, two red
edges which belong to two different components, and swap-
ping red and green on that quadrilateral reduces the number
of components of the subgraph, violating minimality.
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Theorem 10 [2] Given a combinatorial map Γ(R,G,B),
let E be the set of quadrilaterals of R ∪G, and
let F be the collection of subsets of E corresponding to the
pairs of green edges in a fully black Hamilton cycle in Γ.

Then (F , E) is a ∆-matroid.
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We have to show the symmetric exchange property. Let FC

and FC ′ be sets of quadrilaterals corresponding to fully black
Hamiltonian cycles C and C ′. Let q ∈ FC 4 F ′C, so the edges
of quadrilateral q are differently colored in C and C ′, say red
and green. There are two cases, either replacing in q the red
edges in C with the green of C ′ results in two components or
one. See Figure .

q q

If it results in just one component, then take q′ = q, and
Fc4{q, q′} = Fc4{q} is the set of red quadrilaterals of a fully
black Hamiltonian cycle, and hence feasible, as required.
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Otherwise, if there are two components, the Hamiltonian cycle
of C ′ contains a non-black edge, say green, of a quadrilateral
q1, connecting those two components, and necessarily both red
edges of q1 are in C and both green edges of q1 connect the
components, and q′ ∈ C 4 C ′.

qq

q1 q1

Regardless of how the green edges of q1 are placed, swapping the
edges of both q and q′ in C yields a new fully black Hamiltonian
cycle, so the set Q4 {q, q1} is feasible, as required.
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Since R, G and B are perfect matchings, the union of any two
them induces a set of disjoint cycles. Let V be the set of cycles
of R ∪ B, E be the set of cycles of R ∪ G, and V ∗ be the set
of cycles of G ∪ B. There is a graph (V,E) where incidence
is defined between a red-black cycle and a red-green cycle if
they share an edge, and, similarly, there is a graph (V ∗, E)
where incidence is defined between a green-black cycle and a
red-green cycle if they share an edge. We say that Γ encodes
the graph (V,E) and its geometric dual (V ∗, E).
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Theorem 11 Let Γ(R,G,B) be a combinatorial map and
let DΓ = (F, E) be its associated ∆-matroid.
Then
the lower matroid of DΓ is the cycle matroid of (V,E)
and
the upper matroid of DΓ is the cocycle matroid of (V ∗, E).
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Proof: Given Γ(R,G,B), recall that the feasible sets of D
consist of RG quadrilaterals whose R edges are contained in a
fully black Hamilton cycle of Γ.

Any fully black Hamilton cycle C of Γ must contain the red
edges corresponding to a spanning tree of (V,E) as well as the
green edges corresponding to a spanning tree of (V ∗, E). So
the minimal number of red edges in C is 2(|V | − 1), while the
maximal number is 2(|E| − |V ∗| + 1).

The edge sets of the spanning trees of (V,E) are the bases of its
cycle matroid, while the complements of edge sets of spanning
trees in (V ∗, E) are the bases of the cocycle matroid of (V ∗, E).
�
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• The difference in rank of the upper and lower matroid of
(F, E) is given by

(|E| − |V ∗| + 1)− (|V | − 1) = 2− χ,

– χ is the Euler characteristic.

•If Γ is bipartite, all feasible sets of DΓ = (F, E) must have the
same parity –
since exchanging a red and green pair of edges always discon-
nects a Hamilton cycle of a bipartite Γ.
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G*G

F = {{1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6},
{2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 4, 5}, {2, 4, 6}, {3, 4, 5}, {3, 4, 6}}
.
• F is the set of spanning trees of G and at the same time the
set of co-trees of G∗ so

– all feasible sets have the same size and

– the upper and lower matroid are identical.



Matroids vs. ∆- . . .

Matroids in ∆- . . .

Realization Problem

Quotients of . . .

Combinatorial . . .

Rigidity matroid . . .

Bibliography

Home Page

Title Page

JJ II

J I

Page 36 of 54

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

G*G

F = {{1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6},
{2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 4, 5}, {2, 4, 6}, {3, 4, 5}, {3, 4, 6},

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 6}}
The lower matroid is again the cycle matroid of G,

but the upper matroid is the co-cycle matroid of G∗,

The upper matroid has rank 5 and contains exactly one cycle,
namely {5, 6},
which is a minimal cutset of G∗ and also a cycle in G.
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G*G

The ∆-matroid associated to this the map has,
in addition to the feasible sets of the previous example,
the feasible set {1, 2, 3, 4}, whose parity is even, while the parity
of all other feasible sets is odd,
so this map is not orientable.
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As is clear from these examples, the map cannot, in general
be recovered from the ∆-matroid information, since the up-
per or lower matroid do not even determine the graph. Non-
isomorphic graphs may have identical cycle-and co-cycle ma-
troids. It is easy to check that F is also a list of spanning trees
for the graph G′, but G is not isomorphic to G′.
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However, if both G and G∗ are 3-connected, then the map is
uniquely recoverable from the ∆-matroid information.

Theorem 12 Let D be the ∆-matroid of a map M with 2-
connected upper- and lower matroid. Then M is determined
by D.
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Proof: By Whitney’s theorem [19], upper and lower matroid
uniquely determine G and G∗. To recover M from D, we need
to specify a rotation system for each vertex v of G.
To determine if two edges e and f with endpoint v follow each
other in the rotation about v, it is enough to check if e and f are
both incident in G∗, since the vertex co-cycles of G∗ correspond
to the facial cycles of the embedded G.
Now re-construct the map graph �
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For example the lower matroid could be the cycle matroid of
K5, while the upper matroid is the co-cycle matroid of K5 as
well, so this matroid information gives us the graphs G and G∗

depicted in Figures . By the method in the proof of Theorem 12
the map M is easily recovered.
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6. Rigidity matroid for graphs on
surfaces

Represent the surface by a polygon P with boundary identifi-
cations
Given G(V,E), embed V and represent E by straight line seg-
ments on P .
Straight line segments might cross.
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Miracle in the Plane

Planar rigidity cycles dualize into rigidity cycles.
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Rigidity matroid for graphs whose vertices are em-

bedded in the plane

The rigidity matroid is the Dilworth truncation of two cycle
matroids of G. [14, 15]
Equivalently, the rigidity matroid is the Dilworth truncation of
Ml and Mu.
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What is the probability that two points in the unit square torus
have shortest distance intersecting the boundary square.
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So the 4D volume of the collection of points

(x0, y0, x1, y1) ⊆ [0, 1]4

with this property is

V = 4

∫ 1/2

0

∫ 1/2

0

((2x + 1)/2)((2y + 1)/2) dx dy

=

[∫ 1/2

0

2x + 1 dx

] [∫ 1/2

0

2y + 1 dy

]
= [1/4 + 1/2]2 = 9/16
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Rigidity matroid for graphs whose vertices are em-

bedded on a compact surface

Represent the surface by a polygon P with boundary identifi-
cations
Given G(V,E), embed V and represent E by straight line seg-
ments on P .
Straight line segments might cross.
A.a.s. this yields a map M . The rigidity matroid for G on P
is (a truncation) of the union of Mu and Ml.
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Handle slides

[10]
Let D = (E,F) be a set system, and a, b ∈ E with a 6= b. We
define Dab to be the set system (E,Fab) where

Fab = F∆{X ∪ a|X ∪ b ∈ F and X ⊆ E − {a, b}}.

We call the move taking D to Dab

a handle slide taking a over b.
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subsection*Normal form
For each binary ∆-matroid D, there is a sequence of handle
slides taking D to some Di,j,k,l where i is the size of the ground
set minus the size of a largest feasible set, l is the size of a
smallest feasible set, 2j + k is difference in the sizes of a largest
and a smallest feasible set. Moreover, k = 0 if and only if D
is even, and if D is odd then every value of j from 0 to bw

2
c,

where w is the difference between the sizes of a largest and a
smallest feasible set, can be attained.



Matroids vs. ∆- . . .

Matroids in ∆- . . .

Realization Problem

Quotients of . . .

Combinatorial . . .

Rigidity matroid . . .

Bibliography

Home Page

Title Page

JJ II

J I

Page 53 of 54

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

References
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